119 resultados para Manufacturing Process
Resumo:
The process framework comprises three phases, as follows: scope the supply chain/network; identify the options for supply system architecture and select supply system architecture. It facilitates a structured approach that analyses the supply chain/network contextual characteristics, in order to ensure alignment with the appropriate supply system architecture. The process framework was derived from comprehensive literature review and archival case study analysis. The review led to the classification of supply system architectures according to their orientation, whether integrated; partially integrated; co-ordinated or independent. The classification was combined with the characteristics that influence the selection of supply system architecture to encapsulate the conceptual framework. It builds upon existing frameworks and methodologies by focusing on structured procedure; supporting project management; facilitating participation and clarifying point of entry. The process framework was initially tested in three case study applications from the food, automobile and hand tool industries. A variety of industrial settings was chosen to illustrate transferability. The case study applications indicate that the process framework is a valid approach to the problem; however, further testing is required. In particular, the use of group support system technologies to support the process and the steps involving the participation of software vendors need further testing. However, the process framework can be followed due to the clarity of its presentation. It considers the issue of timing by including alternative decision-making techniques, dependent on the constraints. It is useful for ensuring a sound business case is developed, with supporting documentation and analysis that identifies the strategic and functional requirements of supply system architecture.
Resumo:
The right manufacturing technology at the right time can enable an organisation to produce products that are cheaper, better, and made faster than those of the competition. Paradoxically, the wrong technology, or even the right technology poorly implemented, can be disastrous. The decision process through which practitioners acquire manufacturing technologies can significantly impact on their eventual capabilities and performance. This complete process has unfortunately received limited attention in previous studies. Therefore, the work presented in this paper has investigated leading research and industrial practices to create a formal and rational decision process, and then evaluated this through an extended and in-depth case study of a manufacturing technology acquisition. An analysis of previous literature, industrial practices, and the resulting decision process are all presented in this paper.
Resumo:
Manufacturing system design is an ongoing activity within industry. Modelling tools based on Discrete Event Simulation are often used by practitioners during this design cycle. However, such tools do not adequately model the behaviour of 'direct' workers in manufacturing environments. There is an important need to expand the capability of modelling to include the relationships between human centred factors (demography, attitudes, beliefs, etc), their working environment (physical and organizational), and their subsequent performance in terms of productive routines. Therefore, this paper describes research that has formed a pilot modelling methodology that is an important first step in providing such a capability.
Resumo:
The main purpose of this research is to develop and deploy an analytical framework for measuring the environmental performance of manufacturing supply chains. This work's theoretical bases combine and reconcile three major areas: supply chain management, environmental management and performance measurement. Researchers have suggested many empirical criteria for green supply chain (GSC) performance measurement and proposed both qualitative and quantitative frameworks. However, these are mainly operational in nature and specific to the focal company. This research develops an innovative GSC performance measurement framework by integrating supply chain processes (supplier relationship management, internal supply chain management and customer relationship management) with organisational decision levels (both strategic and operational). Environmental planning, environmental auditing, management commitment, environmental performance, economic performance and operational performance are the key level constructs. The proposed framework is then applied to three selected manufacturing organisations in the UK. Their GSC performance is measured and benchmarked by using the analytic hierarchy process (AHP), a multiple-attribute decision-making technique. The AHP-based framework offers an effective way to measure and benchmark organisations’ GSC performance. This study has both theoretical and practical implications. Theoretically it contributes holistic constructs for designing a GSC and managing it for sustainability; and practically it helps industry practitioners to measure and improve the environmental performance of their supply chain. © 2013 Copyright Taylor and Francis Group, LLC. CORRIGENDUM DOI 10.1080/09537287.2012.751186 In the article ‘Green supply chain performance measurement using the analytic hierarchy process: a comparative analysis of manufacturing organisations’ by Prasanta Kumar Dey and Walid Cheffi, Production Planning & Control, 10.1080/09537287.2012.666859, a third author is added which was not included in the paper as it originally appeared. The third author is Breno Nunes.
Resumo:
In today’s modern manufacturing industry there is an increasing need to improve internal processes to meet diverse client needs. Process re-engineering is an important activity that is well understood by industry but its rate of application within small to medium size enterprises (SME) is less developed. Business pressures shift the focus of SMEs toward winning new projects and contracts rather than developing long-term, sustainable manufacturing processes. Variations in manufacturing processes are inevitable, but the amount of non-conformity often exceeds the acceptable levels. This paper is focused on the re-engineering of the manufacturing and verification procedure for discrete parts production with the aim of enhancing process control and product verification. The ideologies of the ‘Push’ and ‘Pull’ approaches to manufacturing are useful in the context of process re-engineering for data improvement. Currently information is pulled from the market and prominent customers, and manufacturing companies always try to make the right product, by following customer procedures that attempt to verify against specifications. This approach can result in significant quality control challenges. The aim of this paper is to highlight the importance of process re-engineering in product verification in SMEs. Leadership, culture, ownership and process management are among the main attributes required for the successful deployment of process re-engineering. This paper presents the findings from a case study showcasing the application of a modified re-engingeering method for the manufacturing and verification process. The findings from the case study indicate there are several advantages to implementing the re-engineering method outlined in this paper.
Resumo:
The importance of the changeover process in the manufacturing industry is becoming widely recognised. Changeover is a complete process of changing between the manufacture of one product to manufacture of an alternative product until specified production and quality rates are reached. The initiatives to improve changeover exist in industry, as better changeover process typically contribute to improved quality performance. A high-quality and reliable changeover process can be achieved through implementation of continuous or radical improvements. This research examines the changeover process of Saudi Arabian manufacturing firms because Saudi Arabia’s government is focused on the expansion of GDP and increasing the number of export manufacturing firms. Furthermore, it is encouraging foreign manufacturing firms to invest within Saudi Arabia. These initiatives, therefore, require that Saudi manufacturing businesses develop the changeover practice in order to compete in the market and achieve the government’s objectives. Therefore, the aim of this research is to discover the current status of changeover process implementation in Saudi Arabian manufacturing businesses. To achieve this aim, the main objective of this research is to develop a conceptual model to understand and examine the effectiveness of the changeover process within Saudi Arabian manufacturing firms, facilitating identification of those activities that affect the reliability and high-quality of the process. In order to provide a comprehensive understanding of this area, this research first explores the concept of quality management and its relationship to firm performance and the performance of manufacturing changeover. An extensive body of literature was reviewed on the subject of lean manufacturing and changeover practice. A research conceptual model was identified based on this review, and focus was on providing high-quality and reliable manufacturing changeover processes during set-up in a dynamic environment. Exploratory research was conducted in sample Saudi manufacturing firms to understand the features of the changeover process within the manufacturing sector, and as a basis for modifying the proposed conceptual model. Qualitative research was employed in the study with semi-structured interviews, direct observations and documentation in order to understand the real situation such as actual daily practice and current status of changeover process in the field. The research instrument, the Changeover Effectiveness Assessment Tool (CEAT) was developed to evaluate changeover practices. A pilot study was conducted by examining the CEAT, proposed for the main research. Consequently, the conceptual model was modified and CEAT was improved in response to the pilot study findings. Case studies have been conducted within eight Saudi manufacturing businesses. These case studies assessed the implementation of manufacturing changeover practice in the lighting and medical products sectors. These two sectors were selected based on their operation strategy which was batch production as well as the fact that they fulfilled the research sampling strategy. The outcomes of the research improved the conceptual model, ultimately to facilitate the firms’ adoption and rapid implementation of a high-quality and reliability changeover during the set-up process. The main finding of this research is that Quality’s factors were considering the lowest levels comparing to the other factors which are People, Process and Infrastructure. This research contributes to enable Saudi businesses to implement the changeover process by adopting the conceptual model. In addition, the guidelines for facilitating implementation were provided in this thesis. Therefore, this research provides insight to enable the Saudi manufacturing industry to be more responsive to rapidly changing customer demands.
Resumo:
As we enter the 21st Century, technologies originally developed for defense purposes such as computers and satellite communications appear to have become a driving force behind economic growth in the United States. Paradoxically, almost all previous econometric models suggest that the largely defense-oriented federal industrial R&D funding that helped create these technologies had no discernible effect on U.S. industrial productivity growth. This paper addresses this paradox by stressing that defense procurement as well as federal R&D expenditures were targeted to a few narrowly defined manufacturing sub-sectors that produced high tech weaponry. Analysis employing data from the NBER Manufacturing Productivity Database and the BEA' s Input Output tables then demonstrates that defense procurement policies did have significant effects on the productivity performance of disaggregated manufacturing industries because of a process of procurement-driven technological change.