33 resultados para Local information
Resumo:
Computational and communication complexities call for distributed, robust, and adaptive control. This paper proposes a promising way of bottom-up design of distributed control in which simple controllers are responsible for individual nodes. The overall behavior of the network can be achieved by interconnecting such controlled loops in cascade control for example and by enabling the individual nodes to share information about data with their neighbors without aiming at unattainable global solution. The problem is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, that can be implemented adaptively and which provide a systematic rich way to information sharing. This paper elaborates the overall solution, applies it to linear-Gaussian case, and provides simulation results.
Resumo:
The traditional use of global and centralised control methods, fails for large, complex, noisy and highly connected systems, which typify many real world industrial and commercial systems. This paper provides an efficient bottom up design of distributed control in which many simple components communicate and cooperate to achieve a joint system goal. Each component acts individually so as to maximise personal utility whilst obtaining probabilistic information on the global system merely through local message-passing. This leads to an implied scalable and collective control strategy for complex dynamical systems, without the problems of global centralised control. Robustness is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, can be implemented adaptively and opens a systematic rich way to information sharing. This paper opens the foreseen direction and inspects the proposed design on a linearised version of coupled map lattice with spatiotemporal chaos. A version close to linear quadratic design gives an initial insight into possible behaviours of such networks.
Resumo:
Recent modelling studies (Hadjipapas et al. [2009]: Neuroimage 44:1290-1303) have shown that it may be possible to distinguish between different neuronal populations on the basis of their macroscopically measured (EEG/MEG) mean field. We set out to test whether the different orientation columns contributing to a signal at a specific cortical location could be identified based on the measured MEG signal. We used 1.5deg square, static, obliquely oriented grating stimuli to generate sustained gamma oscillations in a focal region of primary visual cortex. We then used multivariate classifier methods to predict the orientation (left or right oblique) of the stimuli based purely on the time-series data from this one location. Both the single trial evoked response (0-300 ms) and induced post-transient power spectra (300-2,300 ms, 20-70 Hz band) due to the different stimuli were classifiable significantly above chance in 11/12 and 10/12 datasets respectively. Interestingly, stimulus-specific information is preserved in the sustained part of the gamma oscillation, long after perception has occurred and all neuronal transients have decayed. Importantly, the classification of this induced oscillation was still possible even when the power spectra were rank-transformed showing that the different underlying networks give rise to different characteristic temporal signatures. © 2009 Wiley-Liss, Inc.