52 resultados para Learning, visualisation, mental model, programming, cognitive load
Resumo:
This paper develops and tests a learning organization model derived from HRM and dynamic capability literatures in order to ascertain the model's applicability across divergent global contexts. We define a learning organization as one capable of achieving on-going strategic renewal, arguing based on dynamic capability theory that the model has three necessary antecedents: HRM focus, developmental orientation and customer-facing remit. Drawing on a sample comprising nearly 6000 organizations across 15 countries, we show that learning organizations exhibit higher performance than their less learning-inclined counterparts. We also demonstrate that innovation fully mediates the relationship between our conceptualization of the learning organization and organizational performance in 11 of the 15 countries we examined. It is the first time in our knowledge that these questions have been tested in a major, cross-global study, and our work contributes to both HRM and dynamic capability literatures, especially where the focus is the applicability of best practice parameters across national boundaries.
Resumo:
Background Abnormalities in incentive decision making, typically assessed using the Iowa Gambling Task (IGT), have been reported in both schizophrenia (SZ) and bipolar disorder (BD). We applied the Expectancy-Valence (E-V) model to determine whether motivational, cognitive and response selection component processes of IGT performance are differentially affected in SZ and BD. Method Performance on the IGT was assessed in 280 individuals comprising 70 remitted patients with SZ, 70 remitted patients with BD and 140 age-, sex-and IQ-matched healthy individuals. Based on the E-V model, we extracted three parameters, 'attention to gains or loses', 'expectancy learning' and 'response consistency', that respectively reflect motivational, cognitive and response selection influences on IGT performance. Results Both patient groups underperformed in the IGT compared to healthy individuals. However, the source of these deficits was diagnosis specific. Associative learning underlying the representation of expectancies was disrupted in SZ whereas BD was associated with increased incentive salience of gains. These findings were not attributable to non-specific effects of sex, IQ, psychopathology or medication. Conclusions Our results point to dissociable processes underlying abnormal incentive decision making in BD and SZ that could potentially be mapped to different neural circuits. © 2012 Cambridge University Press.
Resumo:
Linear programming (LP) is the most widely used optimization technique for solving real-life problems because of its simplicity and efficiency. Although conventional LP models require precise data, managers and decision makers dealing with real-world optimization problems often do not have access to exact values. Fuzzy sets have been used in the fuzzy LP (FLP) problems to deal with the imprecise data in the decision variables, objective function and/or the constraints. The imprecisions in the FLP problems could be related to (1) the decision variables; (2) the coefficients of the decision variables in the objective function; (3) the coefficients of the decision variables in the constraints; (4) the right-hand-side of the constraints; or (5) all of these parameters. In this paper, we develop a new stepwise FLP model where fuzzy numbers are considered for the coefficients of the decision variables in the objective function, the coefficients of the decision variables in the constraints and the right-hand-side of the constraints. In the first step, we use the possibility and necessity relations for fuzzy constraints without considering the fuzzy objective function. In the subsequent step, we extend our method to the fuzzy objective function. We use two numerical examples from the FLP literature for comparison purposes and to demonstrate the applicability of the proposed method and the computational efficiency of the procedures and algorithms. © 2013-IOS Press and the authors. All rights reserved.
Resumo:
Purpose – The purpose of this research is to develop a holistic approach to maximize the customer service level while minimizing the logistics cost by using an integrated multiple criteria decision making (MCDM) method for the contemporary transshipment problem. Unlike the prevalent optimization techniques, this paper proposes an integrated approach which considers both quantitative and qualitative factors in order to maximize the benefits of service deliverers and customers under uncertain environments. Design/methodology/approach – This paper proposes a fuzzy-based integer linear programming model, based on the existing literature and validated with an example case. The model integrates the developed fuzzy modification of the analytic hierarchy process (FAHP), and solves the multi-criteria transshipment problem. Findings – This paper provides several novel insights about how to transform a company from a cost-based model to a service-dominated model by using an integrated MCDM method. It suggests that the contemporary customer-driven supply chain remains and increases its competitiveness from two aspects: optimizing the cost and providing the best service simultaneously. Research limitations/implications – This research used one illustrative industry case to exemplify the developed method. Considering the generalization of the research findings and the complexity of the transshipment service network, more cases across multiple industries are necessary to further enhance the validity of the research output. Practical implications – The paper includes implications for the evaluation and selection of transshipment service suppliers, the construction of optimal transshipment network as well as managing the network. Originality/value – The major advantages of this generic approach are that both quantitative and qualitative factors under fuzzy environment are considered simultaneously and also the viewpoints of service deliverers and customers are focused. Therefore, it is believed that it is useful and applicable for the transshipment service network design.
Resumo:
Building on a previous conceptual article, we present an empirically derived model of network learning - learning by a group of organizations as a group. Based on a qualitative, longitudinal, multiple-method empirical investigation, five episodes of network learning were identified. Treating each episode as a discrete analytic case, through cross-case comparison, a model of network learning is developed which reflects the common, critical features of the episodes. The model comprises three conceptual themes relating to learning outcomes, and three conceptual themes of learning process. Although closely related to conceptualizations that emphasize the social and political character of organizational learning, the model of network learning is derived from, and specifically for, more extensive networks in which relations among numerous actors may be arms-length or collaborative, and may be expected to change over time.
Developing a probabilistic graphical structure from a model of mental-health clinical risk expertise
Resumo:
This paper explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. The Galatean Risk Screening Tool [1] is a psychological model for mental health risk assessment based on fuzzy sets. This paper details how the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. These semantics are formalised by a detailed specification for an XML structure used to represent the expertise. The component parts were then mapped to equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgements. © Springer-Verlag 2010.
Resumo:
Solving many scientific problems requires effective regression and/or classification models for large high-dimensional datasets. Experts from these problem domains (e.g. biologists, chemists, financial analysts) have insights into the domain which can be helpful in developing powerful models but they need a modelling framework that helps them to use these insights. Data visualisation is an effective technique for presenting data and requiring feedback from the experts. A single global regression model can rarely capture the full behavioural variability of a huge multi-dimensional dataset. Instead, local regression models, each focused on a separate area of input space, often work better since the behaviour of different areas may vary. Classical local models such as Mixture of Experts segment the input space automatically, which is not always effective and it also lacks involvement of the domain experts to guide a meaningful segmentation of the input space. In this paper we addresses this issue by allowing domain experts to interactively segment the input space using data visualisation. The segmentation output obtained is then further used to develop effective local regression models.
Resumo:
This paper presents a model for measuring personal knowledge development in online learning environments. It is based on Nonaka‘s SECI model of organisational knowledge creation. It is argued that Socialisation is not a relevant mode in the context of online learning and was therefore not covered in the measurement instrument. Therefore, the remaining three of SECI‘s knowledge conversion modes, namely Externalisation, Combination, and Internalisation were used and a measurement instrument was created which also examines the interrelationships between the three modes. Data was collected using an online survey, in which online learners report on their experiences of personal knowledge development in online learning environments. In other words, the instrument measures the magnitude of online learners‘ Externalisation and combination activities as well as their level of internalisation, which is the outcome of their personal knowledge development in online learning.
Resumo:
This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. We use non-linear, artificial intelligence techniques, namely, recurrent neural networks, evolution strategies and kernel methods in our forecasting experiment. In the experiment, these three methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. There is evidence in the literature that evolutionary methods can be used to evolve kernels hence our future work should combine the evolutionary and kernel methods to get the benefits of both.
Resumo:
Failure to detect patients at risk of attempting suicide can result in tragic consequences. Identifying risks earlier and more accurately helps prevent serious incidents occurring and is the objective of the GRiST clinical decision support system (CDSS). One of the problems it faces is high variability in the type and quantity of data submitted for patients, who are assessed in multiple contexts along the care pathway. Although GRiST identifies up to 138 patient cues to collect, only about half of them are relevant for any one patient and their roles may not be for risk evaluation but more for risk management. This paper explores the data collection behaviour of clinicians using GRiST to see whether it can elucidate which variables are important for risk evaluations and when. The GRiST CDSS is based on a cognitive model of human expertise manifested by a sophisticated hierarchical knowledge structure or tree. This structure is used by the GRiST interface to provide top-down controlled access to the patient data. Our research explores relationships between the answers given to these higher-level 'branch' questions to see whether they can help direct assessors to the most important data, depending on the patient profile and assessment context. The outcome is a model for dynamic data collection driven by the knowledge hierarchy. It has potential for improving other clinical decision support systems operating in domains with high dimensional data that are only partially collected and in a variety of combinations.
Resumo:
Analysing the molecular polymorphism and interactions of DNA, RNA and proteins is of fundamental importance in biology. Predicting functions of polymorphic molecules is important in order to design more effective medicines. Analysing major histocompatibility complex (MHC) polymorphism is important for mate choice, epitope-based vaccine design and transplantation rejection etc. Most of the existing exploratory approaches cannot analyse these datasets because of the large number of molecules with a high number of descriptors per molecule. This thesis develops novel methods for data projection in order to explore high dimensional biological dataset by visualising them in a low-dimensional space. With increasing dimensionality, some existing data visualisation methods such as generative topographic mapping (GTM) become computationally intractable. We propose variants of these methods, where we use log-transformations at certain steps of expectation maximisation (EM) based parameter learning process, to make them tractable for high-dimensional datasets. We demonstrate these proposed variants both for synthetic and electrostatic potential dataset of MHC class-I. We also propose to extend a latent trait model (LTM), suitable for visualising high dimensional discrete data, to simultaneously estimate feature saliency as an integrated part of the parameter learning process of a visualisation model. This LTM variant not only gives better visualisation by modifying the project map based on feature relevance, but also helps users to assess the significance of each feature. Another problem which is not addressed much in the literature is the visualisation of mixed-type data. We propose to combine GTM and LTM in a principled way where appropriate noise models are used for each type of data in order to visualise mixed-type data in a single plot. We call this model a generalised GTM (GGTM). We also propose to extend GGTM model to estimate feature saliencies while training a visualisation model and this is called GGTM with feature saliency (GGTM-FS). We demonstrate effectiveness of these proposed models both for synthetic and real datasets. We evaluate visualisation quality using quality metrics such as distance distortion measure and rank based measures: trustworthiness, continuity, mean relative rank errors with respect to data space and latent space. In cases where the labels are known we also use quality metrics of KL divergence and nearest neighbour classifications error in order to determine the separation between classes. We demonstrate the efficacy of these proposed models both for synthetic and real biological datasets with a main focus on the MHC class-I dataset.
Resumo:
Evidence of the relationship between altered cognitive function and depleted Fe status is accumulating in women of reproductive age but the degree of Fe deficiency associated with negative neuropsychological outcomes needs to be delineated. Data are limited regarding this relationship in university women in whom optimal cognitive function is critical to academic success. The aim of the present study was to examine the relationship between body Fe, in the absence of Fe-deficiency anaemia, and neuropsychological function in young college women. Healthy, non-Anaemic undergraduate women (n 42) provided a blood sample and completed a standardised cognitive test battery consisting of one manual (Tower of London (TOL), a measure of central executive function) and five computerised (Bakan vigilance task, mental rotation, simple reaction time, immediate word recall and two-finger tapping) tasks. Women's body Fe ranged from - 4·2 to 8·1 mg/kg. General linear model ANOVA revealed a significant effect of body Fe on TOL planning time (P= 0.002). Spearman's correlation coefficients showed a significant inverse relationship between body Fe and TOL planning time for move categories 4 (r - 0.39, P= 0.01) and 5 (r - 0.47, P= 0.002). Performance on the computerised cognitive tasks was not affected by body Fe level. These findings suggest that Fe status in the absence of anaemia is positively associated with central executive function in otherwise healthy college women. Copyright © The Authors 2012.