45 resultados para LEARNING OBJECTS REPOSITORIES - MODELS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional role of ports in the wider supply chain context is currently being subject to a process of radical review. In broad terms, the traditional model is being replaced by a model which focuses on higher value and more knowledge intensive activities. This trend requires a change in the way in which new knowledge and skills are developed by staff in companies of all kinds within port communities. Traditional models need to be re-evaluated to reflect the increasing importance of knowledge and skills acquisition, particularly in relation to the supply chain management (SCM) concept and the evolving role of information and communications technology (ICT) in improving supply chain capability. This paper describes the case of NITL’s Foundation Certificate Programme (FCP) learning programme with specific reference to its use in addressing some of current shortcomings related to supply chain knowledge and skills in port communities. The FCP rationale is based on the need to move from traditional approaches of supply chain organisation where the various links in the chain were measured and managed in isolation from each other and thus tended to operate at cross purposes, towards more cooperative and integrated approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. We use non-linear, artificial intelligence techniques, namely, recurrent neural networks, evolution strategies and kernel methods in our forecasting experiment. In the experiment, these three methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. There is evidence in the literature that evolutionary methods can be used to evolve kernels hence our future work should combine the evolutionary and kernel methods to get the benefits of both.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial objects may not only be perceived visually but also by touch. We report recent experiments investigating to what extent prior object knowledge acquired in either the haptic or visual sensory modality transfers to a subsequent visual learning task. Results indicate that even mental object representations learnt in one sensory modality may attain a multi-modal quality. These findings seem incompatible with picture-based reasoning schemas but leave open the possibility of modality-specific reasoning mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to demonstrate analytically how entrepreneurial action as learning relating to diversifying into technical clothing - i.e. a high-value manufacturing sector - can take place. This is particularly relevant to recent discussion and debate in academic and policy-making circles concerning the survival of the clothing manufacture industry in developed industrialised countries. Design/methodology/approach - Using situated learning theory (SLT) as the major analytical lens, this case study examines an episode of entrepreneurial action relating to diversification into a high-value manufacturing sector. It is considered on instrumentality grounds, revealing wider tendencies in the management of knowledge and capabilities requisite for effective entrepreneurial action of this kind. Findings - Boundary events, brokers, boundary objects, membership structures and inclusive participation that addresses power asymmetries are found to be crucial organisational design elements, enabling the development of inter- and intracommunal capacities. These together constitute a dynamic learning capability, which underpins entrepreneurial action, such as diversification into high-value manufacturing sectors. Originality/value - Through a refinement of SLT in the context of entrepreneurial action, the paper contributes to an advancement of a substantive theory of managing technological knowledge and capabilities for effective diversification into high-value manufacturing sectors. Copyright © 2014 Emerald Group Publishing Limited. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the self-organising behaviour of smart camera networks which use market-based handover of object tracking responsibilities to achieve an efficient allocation of objects to cameras. Specifically, we compare previously known homogeneous configurations, when all cameras use the same marketing strategy, with heterogeneous configurations, when each camera makes use of its own, possibly different marketing strategy. Our first contribution is to establish that such heterogeneity of marketing strategies can lead to system wide outcomes which are Pareto superior when compared to those possible in homogeneous configurations. However, since the particular configuration required to lead to Pareto efficiency in a given scenario will not be known in advance, our second contribution is to show how online learning of marketing strategies at the individual camera level can lead to high performing heterogeneous configurations from the system point of view, extending the Pareto front when compared to the homogeneous case. Our third contribution is to show that in many cases, the dynamic behaviour resulting from online learning leads to global outcomes which extend the Pareto front even when compared to static heterogeneous configurations. Our evaluation considers results obtained from an open source simulation package as well as data from a network of real cameras. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited. In this paper we take a simple yet effective Bayesian approach to attributed graph learning. We present a naïve node-observation model, where we make the important assumption that the observation of each node and each edge is independent of the others, then we propose an EM-like approach to learn a mixture of these models and a Minimum Message Length criterion for components selection. Moreover, in order to avoid the bias that could arise with a single estimation of the node correspondences, we decide to estimate the sampling probability over all the possible matches. Finally we show the utility of the proposed approach on popular computer vision tasks such as 2D and 3D shape recognition. © 2011 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As one of the most popular deep learning models, convolution neural network (CNN) has achieved huge success in image information extraction. Traditionally CNN is trained by supervised learning method with labeled data and used as a classifier by adding a classification layer in the end. Its capability of extracting image features is largely limited due to the difficulty of setting up a large training dataset. In this paper, we propose a new unsupervised learning CNN model, which uses a so-called convolutional sparse auto-encoder (CSAE) algorithm pre-Train the CNN. Instead of using labeled natural images for CNN training, the CSAE algorithm can be used to train the CNN with unlabeled artificial images, which enables easy expansion of training data and unsupervised learning. The CSAE algorithm is especially designed for extracting complex features from specific objects such as Chinese characters. After the features of articficial images are extracted by the CSAE algorithm, the learned parameters are used to initialize the first CNN convolutional layer, and then the CNN model is fine-Trained by scene image patches with a linear classifier. The new CNN model is applied to Chinese scene text detection and is evaluated with a multilingual image dataset, which labels Chinese, English and numerals texts separately. More than 10% detection precision gain is observed over two CNN models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research indicates associative and strategic deficits mediate age related deficits in memory, whereas simple associative processes are independent of strategic processing and strategic processes mediate resistance to interference. The present study showed age-related deficits in a contingency learning task, although older participants' resistance to interference was not disproportionately affected. Recognition memory predicted discrimination, whereas general cognitive ability predicted resistance to interference, suggesting differentiation between associative and strategic processes in learning and memory, and age declines in associative processes. Older participants' generalisation of associative strength from existing to novel stimulus-response associations was consistent with elemental learning theories, whereas configural models predicted younger participants' responses. This is consistent with associative deficits and reliance on item-level representations in memory during later life. © 2011 Psychology Press Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Markovian models are widely used to analyse quality-of-service properties of both system designs and deployed systems. Thanks to the emergence of probabilistic model checkers, this analysis can be performed with high accuracy. However, its usefulness is heavily dependent on how well the model captures the actual behaviour of the analysed system. Our work addresses this problem for a class of Markovian models termed discrete-time Markov chains (DTMCs). We propose a new Bayesian technique for learning the state transition probabilities of DTMCs based on observations of the modelled system. Unlike existing approaches, our technique weighs observations based on their age, to account for the fact that older observations are less relevant than more recent ones. A case study from the area of bioinformatics workflows demonstrates the effectiveness of the technique in scenarios where the model parameters change over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessing Learning in Higher Education addresses what is probably the most time-consuming part of the work of staff in higher education, and something to the complexity of which many of the recent developments in higher education have added. Getting assessment ‘right’– that is, designing and implementing appropriate models and methods, can determine the future lives and careers of students. But, as Professor Phil Race comments in his excellent and thought-provoking foreword, students entering higher education often have little idea about how exactly assessment will work, and often find that the process is very different from anything they have previously encountered. Assessing Learning in Higher Education contains innovative approaches to assessment drawn from many different cultures and disciplines. The chapter authors argue the need for changing assessment and feedback processes so that they embrace online collaboration and discussion between students as well as between ‘students’ and ‘faculty’. The chapters demonstrate that at some points there is a need to be able to measure individual achievement, and to do this in ways that are valid, transparent, authentic – and above all fair. Assessment and feedback processes need to ensure that students are well prepared for this individual assessment, but also to take account of collaboration and interaction. The respective chapters of Assessing Learning in Higher Education all of which are complete in themselves, but with very useful links to ideas in other chapters, provide numerous illustrations of how this can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UK engineering standards are regulated by the Engineering Council (EC) using a set of generic threshold competence standards which all professionally registered Chartered Engineers in the UK must demonstrate, underpinned by a separate academic qualification at Masters Level. As part of an EC-led national project for the development of work-based learning (WBL) courses leading to Chartered Engineer registration, Aston University has started an MSc Professional Engineering programme, a development of a model originally designed by Kingston University, and build around a set of generic modules which map onto the competence standards. The learning pedagogy of these modules conforms to a widely recognised experiential learning model, with refinements incorporated from a number of other learning models. In particular, the use of workplace mentoring to support the development of critical reflection and to overcome barriers to learning is being incorporated into the learning space. This discussion paper explains the work that was done in collaboration with the EC and a number of Professional Engineering Institutions, to design a course structure and curricular framework that optimises the engineering learning process for engineers already working across a wide range of industries, and to address issues of engineering sustainability. It also explains the thinking behind the work that has been started to provide an international version of the course, built around a set of globalised engineering competences. © 2010 W J Glew, E F Elsworth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the current challenges in model-driven engineering is enabling effective collaborative modelling. Two common approaches are either storing the models in a central repository, or keeping them under a traditional file-based version control system and build a centralized index for model-wide queries. Either way, special attention must be paid to the nature of these repositories and indexes as networked services: they should remain responsive even with an increasing number of concurrent clients. This paper presents an empirical study on the impact of certain key decisions on the scalability of concurrent model queries, using an Eclipse Connected Data Objects model repository and a Hawk model index. The study evaluates the impact of the network protocol, the API design and the internal caching mechanisms and analyzes the reasons for their varying performance.