34 resultados para Iron foundries Production control Data processing
Resumo:
The purpose of this paper is to investigate the technological development of electronic inventory solutions from perspective of patent analysis. We first applied the international patent classification to classify the top categories of data processing technologies and their corresponding top patenting countries. Then we identified the core technologies by the calculation of patent citation strength and standard deviation criterion for each patent. To eliminate those core innovations having no reference relationships with the other core patents, relevance strengths between core technologies were evaluated also. Our findings provide market intelligence not only for the research and development community, but for the decision making of advanced inventory solutions.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
This paper presents a framework for considering quality control of volunteered geographic information (VGI). Different issues need to be considered during the conception, acquisition and post-acquisition phases of VGI creation. This includes items such as collecting metadata on the volunteer, providing suitable training, giving corrective feedback during the mapping process and use of control data, among others. Two examples of VGI data collection are then considered with respect to this quality control framework, i.e. VGI data collection by National Mapping Agencies and by the most recent Geo-Wiki tool, a game called Cropland Capture. Although good practices are beginning to emerge, there is still the need for the development and sharing of best practice, especially if VGI is to be integrated with authoritative map products or used for calibration and/or validation of land cover in the future.
Resumo:
Field material testing provides firsthand information on pavement conditions which are most helpful in evaluating performance and identifying preventive maintenance or overlay strategies. High variability of field asphalt concrete due to construction raises the demand for accuracy of the test. Accordingly, the objective of this study is to propose a reliable and repeatable methodology to evaluate the fracture properties of field-aged asphalt concrete using the overlay test (OT). The OT is selected because of its efficiency and feasibility for asphalt field cores with diverse dimensions. The fracture properties refer to the Paris’ law parameters based on the pseudo J-integral (A and n) because of the sound physical significance of the pseudo J-integral with respect to characterizing the cracking process. In order to determine A and n, a two-step OT protocol is designed to characterize the undamaged and damaged behaviors of asphalt field cores. To ensure the accuracy of determined undamaged and fracture properties, a new analysis method is then developed for data processing, which combines the finite element simulations and mechanical analysis of viscoelastic force equilibrium and evolution of pseudo displacement work in the OT specimen. Finally, theoretical equations are derived to calculate A and n directly from the OT test data. The accuracy of the determined fracture properties is verified. The proposed methodology is applied to a total of 27 asphalt field cores obtained from a field project in Texas, including the control Hot Mix Asphalt (HMA) and two types of warm mix asphalt (WMA). The results demonstrate a high linear correlation between n and −log A for all the tested field cores. Investigations of the effect of field aging on the fracture properties confirm that n is a good indicator to quantify the cracking resistance of asphalt concrete. It is also indicated that summer climatic condition clearly accelerates the rate of aging. The impact of the WMA technologies on fracture properties of asphalt concrete is visualized by comparing the n-values. It shows that the Evotherm WMA technology slightly improves the cracking resistance, while the foaming WMA technology provides the comparable fracture properties with the HMA. After 15 months aging in the field, the cracking resistance does not exhibit significant difference between HMA and WMAs, which is confirmed by the observations of field distresses.