32 resultados para Informational flows


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored the effects on speech intelligibility of across-formant differences in fundamental frequency (ΔF0) and F0 contour. Sentence-length speech analogues were presented dichotically (left=F1+F3; right=F2), either alone or—because competition usually reveals grouping cues most clearly—accompanied in the left ear by a competitor for F2 (F2C) that listeners must reject to optimize recognition. F2C was created by inverting the F2 frequency contour. In experiment 1, all left-ear formants shared the same constant F0 and ΔF0F2 was 0 or ±4 semitones. In experiment 2, all left-ear formants shared the natural F0 contour and that for F2 was natural, constant, exaggerated, or inverted. Adding F2C lowered keyword scores, presumably because of informational masking. The results for experiment 1 were complicated by effects associated with the direction of ΔF0F2; this problem was avoided in experiment 2 because all four F0 contours had the same geometric mean frequency. When the target formants were presented alone, scores were relatively high and did not depend on the F0F2 contour. F2C impact was greater when F2 had a different F0 contour from the other formants. This effect was a direct consequence of the associated ΔF0; the F0F2 contour per se did not influence competitor impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clusters of temporal optical solitons—stable self-localized light pulses preserving their form during propagation—exhibit properties characteristic of that encountered in crystals. Here, we introduce the concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable phases. The proposed general idea offers new approaches to optical coherent transmission technology and can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical platforms from fiber optics to silicon chips. We discuss the key properties of such dynamic temporal crystals that mathematically correspond to non-Hermitian lattices and examine the types of collective mode instabilities determining the lifetime of the soliton train. This transfer of techniques and concepts from solid state physics to information theory promises a new outlook on information storage and transmission.