41 resultados para Image Processing, Visual Prostheses, Visual Information, Artificial Human Vision, Visual Perception
Resumo:
Following miniaturisation of cameras and their integration into mobile devices such as smartphones combined with the intensive use of the latter, it is likely that in the near future the majority of digital images will be captured using such devices rather than using dedicated cameras. Since many users decide to keep their photos on their mobile devices, effective methods for managing these image collections are required. Common image browsers prove to be only of limited use, especially for large image sets [1].
Resumo:
Purpose: To examine the use of real-time, generic edge detection, image processing techniques to enhance the television viewing of the visually impaired. Design: Prospective, clinical experimental study. Method: One hundred and two sequential visually impaired (average age 73.8 ± 14.8 years; 59% female) in a single center optimized a dynamic television image with respect to edge detection filter (Prewitt, Sobel, or the two combined), color (red, green, blue, or white), and intensity (one to 15 times) of the overlaid edges. They then rated the original television footage compared with a black-and-white image displaying the edges detected and the original television image with the detected edges overlaid in the chosen color and at the intensity selected. Footage of news, an advertisement, and the end of program credits were subjectively assessed in a random order. Results: A Prewitt filter was preferred (44%) compared with the Sobel filter (27%) or a combination of the two (28%). Green and white were equally popular for displaying the detected edges (32%), with blue (22%) and red (14%) less so. The average preferred edge intensity was 3.5 ± 1.7 times. The image-enhanced television was significantly preferred to the original (P < .001), which in turn was preferred to viewing the detected edges alone (P < .001) for each of the footage clips. Preference was not dependent on the condition causing visual impairment. Seventy percent were definitely willing to buy a set-top box that could achieve these effects for a reasonable price. Conclusions: Simple generic edge detection image enhancement options can be performed on television in real-time and significantly enhance the viewing of the visually impaired. © 2007 Elsevier Inc. All rights reserved.
Resumo:
A fundamental problem for any visual system with binocular overlap is the combination of information from the two eyes. Electrophysiology shows that binocular integration of luminance contrast occurs early in visual cortex, but a specific systems architecture has not been established for human vision. Here, we address this by performing binocular summation and monocular, binocular, and dichoptic masking experiments for horizontal 1 cycle per degree test and masking gratings. These data reject three previously published proposals, each of which predict too little binocular summation and insufficient dichoptic facilitation. However, a simple development of one of the rejected models (the twin summation model) and a completely new model (the two-stage model) provide very good fits to the data. Two features common to both models are gently accelerating (almost linear) contrast transduction prior to binocular summation and suppressive ocular interactions that contribute to contrast gain control. With all model parameters fixed, both models correctly predict (1) systematic variation in psychometric slopes, (2) dichoptic contrast matching, and (3) high levels of binocular summation for various levels of binocular pedestal contrast. A review of evidence from elsewhere leads us to favor the two-stage model. © 2006 ARVO.
Resumo:
High-level cognitive factors, including self-awareness, are believed to play an important role in human visual perception. The principal aim of this study was to determine whether oscillatory brain rhythms play a role in the neural processes involved in self-monitoring attentional status. To do so we measured cortical activity using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) while participants were asked to self-monitor their internal status, only initiating the presentation of a stimulus when they perceived their attentional focus to be maximal. We employed a hierarchical Bayesian method that uses fMRI results as soft-constrained spatial information to solve the MEG inverse problem, allowing us to estimate cortical currents in the order of millimeters and milliseconds. Our results show that, during self-monitoring of internal status, there was a sustained decrease in power within the 7-13 Hz (alpha) range in the rostral cingulate motor area (rCMA) on the human medial wall, beginning approximately 430 msec after the trial start (p < 0.05, FDR corrected). We also show that gamma-band power (41-47 Hz) within this area was positively correlated with task performance from 40-640 msec after the trial start (r = 0.71, p < 0.05). We conclude: (1) the rCMA is involved in processes governing self-monitoring of internal status; and (2) the qualitative differences between alpha and gamma activity are reflective of their different roles in self-monitoring internal states. We suggest that alpha suppression may reflect a strengthening of top-down interareal connections, while a positive correlation between gamma activity and task performance indicates that gamma may play an important role in guiding visuomotor behavior. © 2013 Yamagishi et al.
Resumo:
In psychophysics, cross-orientation suppression (XOS) and cross-orientation facilitation (XOF) have been measured by investigating mask configuration on the detection threshold of a centrally placed patch of sine-wave grating. Much of the evidence for XOS and XOF comes from studies using low and high spatial frequencies, respectively, where the interactions are thought to arise from within (XOS) and outside (XOF) the footprint of the classical receptive field. We address the relation between these processes here by measuring the effects of various sizes of superimposed and annular cross-oriented masks on detection thresholds at two spatial scales (1 and 7 c/deg) and on contrast increment thresholds at 7 c/deg. A functional model of our results indicates the following (1) XOS and XOF both occur for superimposed and annular masks. (2) XOS declines with spatial frequency but XOF does not. (3) The spatial extent of the interactions does not scale with spatial frequency, meaning that surround-effects are seen primarily at high spatial frequencies. (4) There are two distinct processes involved in XOS: direct divisive suppression and modulation of self-suppression. (5) Whether XOS or XOF wins out depends upon their relative weights and mask contrast. These results prompt enquiry into the effect of spatial frequency at the single-cell level and place new constraints on image-processing models of early visual processing. © ARVO.
Resumo:
Modern managers are under tremendous pressure in attempting to fulfil a profoundly complex managerial task, that of handling information resources. Information management, an intricate process requiring a high measure of human cognition and discernment, involves matching a manager's lack of information processing capacity against his information needs, with voluminous information at his disposal. The nature of the task will undoubtedly become more complex in the case of a large organisation. Management of large-scale organisations is therefore an exceedingly challenging prospect for any manager to be faced with. A system that supports executive information needs will help reduce managerial and informational mismatches. In the context of the Malaysian public sector, the task of overall management lies with the Prime Minister and the Cabinet. The Prime Minister's Office is presently supporting the Prime Minister's information and managerial needs, although not without various shortcomings. The rigid formalised structure predominant of the Malaysian public sector, so opposed to dynamic treatment of problematic issues as faced by that sector, further escalates the managerial and organisational problem of coping with a state of complexity. The principal features of the research are twofold: the development of a methodology for diagnosing the problem organisation' and the design of an office system. The methodological development is done in the context of the Malaysian public sector, and aims at understanding the complexity of its communication and control situation. The outcome is a viable model of the public sector. `Design', on the other hand, is developing a syntax or language for office systems which provides an alternative to current views on office systems. The design is done with reference to, rather than for, the Prime Minister's Office. The desirable outcome will be an office model called Office Communication and Information System (OCIS).
Resumo:
The thesis will show how to equalise the effect of quantal noise across spatial frequencies by keeping the retinal flux (If-2) constant. In addition, quantal noise is used to study the effect of grating area and spatial frequency on contrast sensitivity resulting in the extension of the new contrast detection model describing the human contrast detection system as a simple image processor. According to the model the human contrast detection system comprises low-pass filtering due to ocular optics, addition of light dependent noise at the event of quantal absorption, high-pass filtering due to the neural visual pathways, addition of internal neural noise, after which detection takes place by a local matched filter, whose sampling efficiency decreases as grating area is increased. Furthermore, this work will demonstrate how to extract both the optical and neural modulation transfer functions of the human eye. The neural transfer function is found to be proportional to spatial frequency up to the local cut-off frequency at eccentricities of 0 - 37 deg across the visual field. The optical transfer function of the human eye is proposed to be more affected by the Stiles-Crawford -effect than generally assumed in the literature. Similarly, this work questions the prevailing ideas about the factors limiting peripheral vision by showing that peripheral optical acts as a low-pass filter in normal viewing conditions, and therefore the effect of peripheral optics is worse than generally assumed.
Resumo:
The research developed in this thesis explores the sensing and inference of human movement in a dynamic way, as opposed to conventional measurement systems, that are only concerned with discrete evaluations of stimuli in sequential time. Typically, conventional approaches are used to infer the dynamic movement of the body; such as vision and motion tracking devices, with either a human diagnosis or complex image processing algorithm to classify the movement. This research is therefore the first of its kind to attempt and provide a movement classifying algorithm through the use of minimal sensing points, with the application for this novel system, to classify human movement during a golf swing. There are two main categories of force sensing. Firstly, array-type systems consisting of many sensing elements, and are the most commonly researched and commercially available. Secondly, reduced force sensing element systems (RFSES) also known as distributive systems have only been recently exploited in the academic world. The fundamental difference between these systems is that array systems handle the data captured from each sensor as unique outputs and suffer the effects of resolution. The effect of resolution, is the error in the load position measurement between sensing elements, as the output is quantized in terms of position. This can be compared to a reduced sensor element system that maximises that data received through the coupling of data from a distribution of sensing points to describe the output in discrete time. Also this can be extended to a coupling of transients in the time domain to describe an activity or dynamic movement. It is the RFSES that is to be examined and exploited in the commercial sector due to its advantages over array-based approaches such as reduced design, computational complexity and cost.
Resumo:
Dementia with Lewy bodies ('Lewy body dementia' or 'diffuse Lewy body disease') (DLB) is the second most common form of dementia to affect elderly people, after Alzheimer's disease. A combination of the clinical symptoms of Alzheimer's disease and Parkinson's disease is present in DLB and the disorder is classified as a 'parkinsonian syndrome', a group of diseases which also includes Parkinson's disease, progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy. Characteristics of DLB are fluctuating cognitive ability with pronounced variations in attention and alertness, recurrent visual hallucinations and spontaneous motor features, including akinesia, rigidity and tremor. In addition, DLB patients may exhibit visual signs and symptoms, including defects in eye movement, pupillary function and complex visual functions. Visual symptoms may aid the differential diagnoses of parkinsonian syndromes. Hence, the presence of visual hallucinations supports a diagnosis of Parkinson's disease or DLB rather than progressive supranuclear palsy. DLB and Parkinson's disease may exhibit similar impairments on a variety of saccadic and visual perception tasks (visual discrimination, space-motion and object-form recognition). Nevertheless, deficits in orientation, trail-making and reading the names of colours are often significantly greater in DLB than in Parkinson's disease. As primary eye-care practitioners, optometrists should be able to work with patients with DLB and their carers to manage their visual welfare.
Resumo:
Visual stress is a condition characterised by symptoms of eyestrain, headaches and distortions of visual perception when reading text. The symptoms are frequently alleviated with spectral filters and precision tinted ophthalmic lenses. Visual stress is thought to arise due to cortical hyperexcitability and is associated with a range of neurological conditions. Cortical hyperexcitability is known to occur following stroke. The case presented describes visual stress symptoms resulting from stroke, subsequently managed with spectral filters and precision tinted ophthalmic lenses. The case also highlights that the spectral properties of the tint may need to be modified if the disease course alters.
Resumo:
The eye is the major organ of vision and highly specialized for photoreception. It focusses light from an object onto the light-sensitive retina. Changes in specialized neurons in the retina result in nerve action potentials which are relayed to the brain via the optic nerve. Visual processing by the brain results in ‘visual perception’, the construction of a sensory image which is consciously appreciated as vision. All other structures of the eye are subsidiary to this function, either by facilitating focusing of light rays or by supporting the tissues of the eye. This chapter is an introduction to the various parts of the eye including the eyelids and associated structures, conjunctiva, cornea, sclera, iris, lens, vitreous body, retina, optic disc and nerve, and orbit. This chapter describes the functions of these various structures and their importance in achieving a visual image.