42 resultados para IEA-R1 REACTOR
Resumo:
The first demonstration of heterogeneous catalysis within an oscillatory baffled flow reactor (OBR) is reported, exemplified by the solid acid catalysed esterification of organic acids, an important prototypical reaction for fine chemicals and biofuel synthesis. Suspension of a PrSOH-SBA-15 catalyst powder is readily achieved within the OBR under an oscillatory flow, facilitating the continuous esterification of hexanoic acid. Excellent semi-quantitative agreement is obtained between OBR and conventional stirred batch reaction kinetics, demonstrating efficient mixing, and highlighting the potential of OBRs for continuous, heterogeneously catalysed liquid phase transformations. Kinetic analysis highlights acid chain length (i.e. steric factors) as a key predictor of activity. Continuous esterification offers improved ester yields compared with batch operation, due to the removal of water by-product from the catalyst, evidencing the versatility of the OBR for heterogeneous flow chemistry and potential role as a new clean catalytic technology. © The Royal Society of Chemistry 2013.
Resumo:
A catalytic reactor for the trapping of free radicals originating from gas phase catalytic reactions is described and discussed. Radical trapping and identification were initially carried out using a known radical generator such as dicumyl peroxide. The trapping of radicals was further demonstrated by investigating genuine radical oxidation processes, e.g., benzaldehyde oxidation over manganese and cobalt salts. The efficiency of the reactor was finally proven by the partial oxidation of cyclohexane over MoO3, Cr2O3, and WO3, which allowed the identification of all the radical intermediates responsible for the formation of the products cyclohexanol and cyclohexanone. Assignment of the trapped radicals was carried out using spin trapping technique and X -band electron paramagnetic resonance spectroscopy. © 2010 American Institute of Physics.
Resumo:
A continuous multi-step synthesis of 1,2-diphenylethane was performed sequentially in a structured compact reactor. This process involved a Heck C-C coupling reaction followed by the addition of hydrogen to perform reduction of the intermediate obtained in the first step. Both of the reactions were catalysed by microspherical carbon-supported Pd catalysts. Due to the integration of the micro-heat exchanger, the static mixer and the mesoscale packed-bed reaction channel, the compact reactor was proven to be an intensified tool for promoting the reactions. In comparison with the batch reactor, this flow process in the compact reactor was more efficient as: (i) the reaction time was significantly reduced (ca. 7 min versus several hours), (ii) no additional ligands were used and (iii) the reaction was run at lower operational pressure and temperature. Pd leached in the Heck reaction step was shown to be effectively recovered in the following hydrogenation reaction section and the catalytic activity of the system can be mostly retained by reverse flow operation. © 2009 Elsevier Inc. All rights reserved.
Resumo:
Isomerisation of α-pinene oxide to campholenic aldehyde was performed by immobilising zinc triflate based catalysts on the surface of a spinning disc reactor (SDR). Two types of catalyst have been studied and the influence of operating parameters such as rotational speed, feed flow rate and reaction temperature on conversion and selectivity towards campholenic aldehyde has been investigated in considerable detail. The findings of the study suggest that immobilising the catalyst on the reactor surface and performing the reaction in continuous mode has potential for achieving benefits of Green Chemical Technology (GCT).
Resumo:
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics, gas residence time, temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively, resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study, the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.
Resumo:
This chapter discusses engineering design and performance of various types of biomass transformation reactors. These reactors vary in their operating principle depending on the processing capacity and the nature of the desired end product, that is, gas, chemicals or liquid bio-oil. Mass balance around a thermal conversion reactor is usually carried out to identify the degree of conversion and obtain the amount of the various components in the product. The energy balance around the reactors is essential for determining the optimum reactor temperature and the amount of heat required to complete the overall reactions. Experimental and pilot-plant testing is essential for proper reactor design. However, it is common practice to use correlation and valid parameter values in determining the realistic reactor dimensions and configurations. Despite the recent progress in thermochemical conversion technology, reactor performance and scale up potential are the subjects of continuing research.
Resumo:
A Eulerian-Eulerian CFD model was used to investigate the fast pyrolysis of biomass in a downer reactor equipped with a novel gas-solid separation mechanism. The highly endothermic pyrolysis reaction was assumed to be entirely driven by an inert solid heat carrier (sand). A one-step global pyrolysis reaction, along with the equations describing the biomass drying and heat transfer, was implemented in the hydrodynamic model presented in part I of this study (Fuel Processing Technology, V126, 366-382). The predictions of the gas-solid separation efficiency, temperature distribution, residence time and the pyrolysis product yield are presented and discussed. For the operating conditions considered, the devolatilisation efficiency was found to be above 60% and the yield composition in mass fraction was 56.85% bio-oil, 37.87% bio-char and 5.28% non-condensable gas (NCG). This has been found to agree reasonably well with recent relevant published experimental data. The novel gas-solid separation mechanism allowed achieving greater than 99.9% separation efficiency and < 2 s pyrolysis gas residence time. The model has been found to be robust and fast in terms of computational time, thus has the great potential to aid in future design and optimisation of the biomass fast pyrolysis process.
Resumo:
This paper analyzes the physical phenomena that take place inside an 1 kg/h bubbling fluidized bed reactor located at Aston University and presents a geometrically modified version of it, in order to improve certain hydrodynamic and gas flow characteristics. The bed uses, in its current operation, 40 L/min of N2 at 520 °C fed through a distributor plate and 15 L/min purge gas stream, i.e., N2 at 20 °C, via the feeding tube. The Eulerian model of FLUENT 6.3 is used for the simulation of the bed hydrodynamics, while the k - ε model accounts for the effect of the turbulence field of one phase on the other. The three-dimensional simulation of the current operation of the reactor showed that a stationary bubble was formed next to the feeding tube. The size of the permanent bubble reaches up to the splash zone of the reactor, without any fluidizaton taking place underneath the feeder. The gas flow dynamics in the freeboard of the reactor is also analyzed. A modified version of the reactor is presented, simulated, and analyzed, together with a discussion on the impact of the flow dynamics on the fast pyrolysis of biomass. © 2010 American Chemical Society.
Resumo:
This study presents a report on pyrolysis of Napier grass stem in a fixed bed reactor. The effects of nitrogen flow (20 to 60 mL/min), and reaction temperature (450 to 650 degrees C) were investigated. Increasing the nitrogen flow from 20 to 30 mL/min increased the bio-oil yield and decreased both bio-char and non-condensable gas. 30 mL/min nitrogen flow resulted in optimum bio-oil yield and was used in the subsequent experiments. Reaction temperatures between 450 and 600 degrees C increased the bio-oil yield, with maximum yield of 32.26 wt% at 600 degrees C and a decrease in the corresponding bio-char and non-condensable gas. At 650 degrees C, reductions in the bio-oil and bio-char yields were recorded while the non-condensable gas increased. Water content of the bio-oil decreased with increasing reaction temperature, while density and viscosity increased. The observed pH and higher heating values were between 2.43 to 2.97, and 25.25 to 28.88 MJ/kg, respectively. GC-MS analysis revealed that the oil was made up of highly oxygenated compounds and requires upgrading. The bio-char and non-condensable gas were characterized, and the effect of reaction temperature on the properties was evaluated. Napier grass represents a good source of renewable energy when all pyrolysis products are efficiently utilized.
Resumo:
In this study, rice husk and corn stalk have been pyrolyzed in an auger pyrolysis reactor at pyrolysis temperatures of 350, 400, 450, 500, 550, and 600 °C in order to investigate the effect of the pyrolysis temperature on the pyrolysis performance of the reactor and physicochemical properties of pyrolysis products (this paper focuses on char and gas). The results have shown that the pyrolysis temperature significantly affects the mass yields and properties of the pyrolysis products. The mass yields of pyrolysis liquid and char are comparable to those reported for the same feedstocks processed in fluidized bed reactors. With the increase of the pyrolysis temperature, the pyrolysis liquid yield shows a peak at 500 °C, the char yield decreases, and the gas yield increases for both feedstocks. The higher heating value (HHV) and volatile matter content of char increase as the pyrolysis temperature increases from 350 to 600 °C. The gases obtained from the pyrolysis of rice husk and corn stalk mainly contain CO2, CO, CH4, H2, and other light hydrocarbons; the molar fractions of combustible gases increase and therefore their HHVs subsequently increase with the increase of the pyrolysis temperature.
Resumo:
This study presents a computational parametric analysis of DME steam reforming in a large scale Circulating Fluidized Bed (CFB) reactor. The Computational Fluid Dynamic (CFD) model used, which is based on Eulerian-Eulerian dispersed flow, has been developed and validated in Part I of this study [1]. The effect of the reactor inlet configuration, gas residence time, inlet temperature and steam to DME ratio on the overall reactor performance and products have all been investigated. The results have shown that the use of double sided solid feeding system remarkable improvement in the flow uniformity, but with limited effect on the reactions and products. The temperature has been found to play a dominant role in increasing the DME conversion and the hydrogen yield. According to the parametric analysis, it is recommended to run the CFB reactor at around 300 °C inlet temperature, 5.5 steam to DME molar ratio, 4 s gas residence time and 37,104 ml gcat -1 h-1 space velocity. At these conditions, the DME conversion and hydrogen molar concentration in the product gas were both found to be around 80%.