34 resultados para High strain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical fibre strain sensors using Fibre Bragg Gratings (FBGs) are poised to play a major role in structural health monitoring in a variety of application from aerospace to civil engineering. At the heart of technology is the optoelectronic instrumentation required to convert optical signals into measurands. Users are demanding compact, lightweight, rugged and low cost solutions. This paper describes development of a new device based on a blazed FBG and CCD array that can potentially meet the above demands. We have shown that this very low cost technique may be used to interrogate a WDM array of sensor gratings with highly accurate and highly repeatable results unaffected by the polarisation state of the radiation. In this paper, we present results showing that sensors may be interrogated with an RMS error of 1.7pm, drift below 0.12pm and dynamic range of up to 65nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform numerical simulations on a model describing a Brillouin-based temperature and strain sensor, testing its response when it is probed with relatively short pulses. Experimental results were recently published [e.g., Opt. Lett. 24, 510 (1999)] that showed a broadening of the Brillouin loss curve when the probe pulse duration is reduced, followed by a sudden and rather surprising reduction of the linewidth when the pulse duration gets shorter than the acoustic relaxation time. Our study reveals the processes responsible for this behavior. We give a clear physical insight into the problem, allowing us to define the best experimental conditions required for one to take the advantage of this effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A temperature sensor based on a multimode-singlemode-multimode (MSM) fiber structure has been proposed and experimentally demonstrated. By utilizing the interference between fiber core and cladding modes, temperature measurement is exploited by monitoring the selected resonant dips shift of the transmission spectrum. A high temperature sensitivity of 50.65 pm/ºC is achieved at a certain resonant dip, accompanied by a suppressed strain sensitivity of only 0.587 pm/με. The sensor reveals the advantages of easy fabrication and interrogation, low cost and small axial strain response. © 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are employed in a Michelson interferometer setup with one grating serving as the reference grating whereas the other serving as the sensing element. Broadband spectral interferogram is formed and the strain information is encoded into the wavelength-dependent free spectral range (FSR). Ultrafast interrogation is achieved based on dispersion-induced time stretch such that the target spectral interferogram is mapped to a temporal interference waveform that can be captured in real-Time using a single-pixel photodector. The distributed strain along the sensing grating can be reconstructed from the instantaneous RF frequency of the captured waveform. High-spatial resolution is also obtained due to high-speed data acquisition. In a proof-of-concept experiment, ultrafast real-Time interrogation of fully-distributed grating sensors with various strain distributions is experimentally demonstrated. An ultrarapid measurement speed of 50 MHz with a high spatial resolution of 31.5 μm over a gauge length of 25 mm and a strain resolution of 9.1 μϵ have been achieved.