77 resultados para High input power


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We design a Raman fibre laser with a short cavity providing narrow-band generation. The laser is based on a commercial single-mode fibre (980-HP) span of 12 m length. The laser generates up to 11 W of intracavity power. Even at high generation power, the laser spectrum is narrow (less than 200 pm) - several times narrower than for conventional Raman fibre lasers based on longer fibres. The intensity dynamics reveals indications of mode correlations. © 2014 Astro Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present what is to our knowledge the first demonstration of a tunable fiber Bragg grating device in polymer optical fiber that utilizes a thin-film resistive heater deposited on the surface of the fiber. The polymer fiber was coated via photochemical deposition of a Pd/Cu metallic layer with a procedure induced by vacuum-ultraviolet radiation at room temperature. The resulting device, when wavelength tuned via joule heating, underwent a wavelength shift of 2 nm for a moderate input power of 160 mW, a wavelength to input power coefficient of-13.4 pm/mW, and a time constant of 1.7 s-1. © 2007 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel time-division-multiplexed Bragg grating interrogation system is presented, utilising a semiconductor optical amplifier within a resonating cavity. Without fast electronics, closely spaced low reflectivity gratings are interrogated with high signal power and low noise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear inverse synthesis (NIS) method, in which information is encoded directly onto the continuous part of the nonlinear signal spectrum, has been proposed recently as a promising digital signal processing technique for combating fiber nonlinearity impairments. However, because the NIS method is based on the integrability property of the lossless nonlinear Schrödinger equation, the original approach can only be applied directly to optical links with ideal distributed Raman amplification. In this paper, we propose and assess a modified scheme of the NIS method, which can be used effectively in standard optical links with lumped amplifiers, such as, erbium-doped fiber amplifiers (EDFAs). The proposed scheme takes into account the average effect of the fiber loss to obtain an integrable model (lossless path-averaged model) to which the NIS technique is applicable. We found that the error between lossless pathaveraged and lossy models increases linearly with transmission distance and input power (measured in dB). We numerically demonstrate the feasibility of the proposed NIS scheme in a burst mode with orthogonal frequency division multiplexing (OFDM) transmission scheme with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 3.5 dB; these results are comparable to those achievable with multi-step per span digital backpropagation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We apply well known nonlinear diffraction theory governing focusing of a powerful light beam of arbitrary shape in medium with Kerr nonlinearity to the analysis of femtosecond (fs) laser processing of dielectric in sub-critical (input power less than the critical power of selffocusing) regime. Simple analytical expressions are derived for the input beam power and spatial focusing parameter (numerical aperture) that are required for achieving an inscription threshold. Application of non-Gaussian laser beams for better controlled fs inscription at higher powers is also discussed. © 2007 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes experimental and numerical results of the plasma-assisted microfabrication of subwavelength structures by means of point-by point femtosecond laser inscription. It is shown that the spatio-temporal evolution of light and plasma patterns critically depend on input power. Subwavelength inscription corresponds to the supercritical propagation regimes when pulse power is several times self-focusing threshold. Experimental and numerical profiles show quantitative agreement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Full text: Semiconductor quantum dot lasers are attractive for multipletechnological applications in biophotonics. Simultaneous two-state lasing ofground state (GS) and excited state (ES) electrons and holes in QD lasers ispossible under a certain parameter range. It has already been investigated in steady-stateoperations and in dynamical regimes and is currently a subject of the intesiveresearch. It has been shown that the relaxation frequency in the two-state lasingregime is not a function of the total intensity [1], as could be traditionallyexpected.In this work we study damping relaxation oscillations in QD lasersimultaneously operating at two transitions, and find that under variouspumping conditions, the frequency of oscillations may decrease, increase orstay without change in time as shown in Fig1.The studied QD laser structure wasgrown on a GaAs substrate by molecular-beam epitaxy. The active region includedfive layers of self-assembled InAs QDs separated with a GaAs spacer from a5.3nm thick covering layer of InGaAs and processed into 4mm-wide mesa stripe devices. The 2.5mm long lasers withhigh-and antireflection coatings on the rear and front facets lasesimultaneously at the GS (around 1265nm) and ES (around 1190nm) in the wholerange of pumping. Pulsed electrical pumping obtained from a high power (up to2A current) pulse source was used to achieve high output power operation. We simultaneously detect the total output and merely ES output using aBragg filter transmitting the short-wavelength and reflecting the long-wavelengthradiation. Typical QD does not demonstrate relaxation oscillations frequencybecause of the strong damping [2]. It is confirmed for the low (I<0.68A) andhigh (I>1.2 A) range of the pump currents in our experiments. The situationis different for a short range of the medium currents (0.68A

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The multicore fiber (MCF) is a physical system of high practical importance. In addition to standard exploitation, MCFs may support discrete vortices that carry orbital angular momentum suitable for spatial-division multiplexing in high-capacity fiber-optic communication systems. These discrete vortices may also be attractive for high-power laser applications. We present the conditions of existence, stability, and coherent propagation of such optical vortices for two practical MCF designs. Through optimization, we found stable discrete vortices that were capable of transferring high coherent power through the MCF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pulse–pulse interaction that leads to rogue wave (RW) generation in lasers was previously attributed either to soliton–soliton or soliton–dispersive-wave interaction. The beating between polarization modes in the absence of a saturable absorber causes similar effects. Accounting for these polarization modes in a laser resonator is the purpose of the distributed vector model of laser resonators. Furthermore, high pump power, high amplitude, and short pulse duration are not necessary conditions to observe pulse attraction, repulsion, and collisions and the resonance exchange of energy between among them. The regimes of interest can be tuned just by changing the birefringence in the cavity with the pump power slightly higher than the laser threshold. This allows the observation of a wide range of RW patterns in the same experiment, as well as to classify them. The dynamics of the interaction between pulses leads us to the conclusion that all of these effects occur due to nonlinearity induced by the inverse population in the active fiber as well as an intrinsic nonlinearity in the passive part of the cavity. Most of the mechanisms of pulse–pulse interaction were found to be mutually exclusive. This means that all the observed RW patterns, namely, the “lonely,” “twins,” “three sisters,” and “cross,” are probably different cases of the same process.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush (Juncus effuses) and bracken (Pteridium aquilinum) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 105 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Generation of picosecond pulses with a peak power in excess of 7W and a duration of 24ps from a gain-switched InGaN diode laser is demonstrated for the first time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Supercontinuum generation in a multi-fiber ultra-long Raman fiber laser cavity is experimentally investigated for the first time. We demonstrate significantly enhanced spectral flatness and supercontinuum generation efficiency using only conventional single mode silica fiber. With a pump power of only 1.63W a ~15dB bandwidth >260 nm wide (from 1440 to >1700nm) supercontinuum source is reported with a flatness of <1dB over 180nm using an optimised hybrid TW/HNLF cavity. We address the dependence of the supercontinuum spectrum on the input pump power and ultra-long Raman cavity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As mobile technologies continue to penetrate increasingly diverse domains of use, we accordingly need to understand the feasibility of different interaction technologies across such varied domains. This case study describes an investigation into whether speechbased input is a feasible interaction option for use in a complex, and arguably extreme, environment of use – that is, lobster fishing vessels. We reflect on our approaches to bringing the “high seas” into lab environments for this purpose, comparing the results obtained via our lab and our field studies. Our hope is that the work presented here will go some way to enhancing the literature in terms of approaches to bringing complex real-world contexts into lab environments for the purpose of evaluating the feasibility of specific interaction technologies.