33 resultados para HUMAN EYE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To examine the influence of positional misalignments on intraocular pressure (IOP) measurement with a rebound tonometer. Methods. Using the iCare rebound tonometer, IOP readings were taken from the right eye of 36 healthy subjects at the central corneal apex (CC) and compared to IOP measures using the Goldmann applanation tonometer (GAT). Using a bespoke rig, iCare IOP readings were also taken 2 mm laterally from CC, both nasally and temporally, along with angular deviations of 5 and 10 degrees, both nasally and temporally to the visual axis. Results. Mean IOP ± SD, as measured by GAT, was 14.7±2.5 mmHg versus iCare tonometer readings of 17.4±3.6 mmHg at CC, representing an iCare IOP overestimation of 2.7±2.8 mmHg (P<0.001), which increased at higher average IOPs. IOP at CC using the iCare tonometer was not significantly different to values at lateral displacements. IOP was marginally underestimated with angular deviation of the probe but only reaching significance at 10 degrees nasally. Conclusions. As shown previously, the iCare tonometer overestimates IOP compared to GAT. However, IOP measurement in normal, healthy subjects using the iCare rebound tonometer appears insensitive to misalignments. An IOP underestimation of <1 mmHg with the probe deviated 10 degrees nasally reached statistical but not clinical significance levels. © 2013 Ian G. Beasley et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human accommodation system has been extensively examined for over a century, with a particular focus on trying to understand the mechanisms that lead to the loss of accommodative ability with age (Presbyopia). The accommodative process, along with the potential causes of presbyopia, are disputed; hindering efforts to develop methods of restoring accommodation in the presbyopic eye. One method that can be used to provide insight into this complex area is Finite Element Analysis (FEA). The effectiveness of FEA in modelling the accommodative process has been illustrated by a number of accommodative FEA models developed to date. However, there have been limitations to these previous models; principally due to the variation in data on the geometry of the accommodative components, combined with sparse measurements of their material properties. Despite advances in available data, continued oversimplification has occurred in the modelling of the crystalline lens structure and the zonular fibres that surround the lens. A new accommodation model was proposed by the author that aims to eliminate these limitations. A novel representation of the zonular structure was developed, combined with updated lens and capsule modelling methods. The model has been designed to be adaptable so that a range of different age accommodation systems can be modelled, allowing the age related changes that occur to be simulated. The new modelling methods were validated by comparing the changes induced within the model to available in vivo data, leading to the definition of three different age models. These were used in an extended sensitivity study on age related changes, where individual parameters were altered to investigate their effect on the accommodative process. The material properties were found to have the largest impact on the decline in accommodative ability, in particular compared to changes in ciliary body movement or zonular structure. Novel data on the importance of the capsule stiffness and thickness was also established. The new model detailed within this thesis provides further insight into the accommodation mechanism, as well as a foundation for future, more detailed investigations into accommodation, presbyopia and accommodative restoration techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Alcohol consumption is inversely correlated with the incidence of cardiovascular disease. It is thought that red wine is specifically responsible for these cardiovascular benefits, due to its ability to reduce vascular inflammation, facilitate vasorelaxation, and inhibit angiogenesis. This is because of its high polyphenolic content. Resveratrol is the main biologically active polyphenol within red wine. Owing to its vascular-enhancing properties, resveratrol may be effective in the microcirculation of the eye, thereby helping prevent ocular diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Such conditions are accountable for worldwide prevalence of visual loss. Method: A review of the relevant literature was conducted on the ScienceDirect, Web of Science, and PubMed databases. Key words used to carry out the searches included 'red wine', 'polyphenols', 'resveratrol', 'eye' and 'ocular'. Articles relating to the effects of resveratrol on the eye were reviewed. Results: The protective effects of resveratrol within the eye are extensive. It has been demonstrated to have anti-oxidant, anti-apoptotic, anti-tumourogenic, anti-inflammatory, anti-angiogenic and vasorelaxant properties. There are potential benefits of resveratrol supplementation across a wide range of ocular diseases. The molecular mechanisms underlying these protective actions are diverse. Conclusion: Evidence suggests that resveratrol may have potential in the treatment of several ocular diseases. However, while there are many studies indicating plausible biological mechanisms using animal models and in-vitro retinal cells there is a paucity of human research. The evidence base for the use of resveratrol in the management of ocular diseases needs to be increased before recommendations can be made for the use of resveratrol as an ocular supplement. © 2014 Springer-Verlag.