50 resultados para Gujer, Jakob, 1716-1785.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial pattern of the vacuolation ('spongiform change') was studied in the upper and lower laminae of the cerebral cortex, the CA1/CA2 sectors of the hippocampus and the molecular layer of the cerebellum in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). Individual vacuoles were grouped into clusters, 50 to >1600 μm in diameter and, in the majority of tissue sections, the vacuole clusters were distributed with regular periodicity parallel to the tissue boundary. The size of the vacuole clusters was positively correlated with patient age in the lower laminae of the occipital cortex and the inferior temporal gyrus (ITG) and negatively correlated with age in the hippocampus. In addition, the size of the vacuole clusters was positively correlated with disease duration in the upper laminae of the ITG. The size and distribution of the vacuole clusters suggests that the vacuolation in CJD reflects the degeneration of specific brain pathways and supports the hypothesis that prion pathology may spread through the brain along well defined anatomical pathways. (C) 2000 Elsevier Science Ireland Ltd.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of PrP aggregates is important both in attempting to elucidate the pathogenesis of prion disease and in the development of treatments designed to inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein deposits. Mathematical models suggest that if either aggregation/disaggregation or surface diffusion is the predominant factor, then the size frequency distribution of the resulting protein aggregates will be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different populations of PrP deposit, viz., the diffuse and florid-type PrP deposits characteristic of patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse deposits were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of aggregate deviated significantly from a log-normal model in all areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid deposits. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse deposits. These results may be useful in the design of treatments to inhibit the development of PrP aggregates in vCJD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the symptoms and pathology associated with Creutzfeldt-Jakob disease and prion disease, how prion protein may cause disease and the visual aspects of prion diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variant Creutzfeldt-Jakob disease (vCJD) was first described in the UK in 1996 and is one of a group of diseases, the transmissible spongiform encephalopathies (TSEs) which affect both animals and humans. This review discusses vCJD in the context of other TSEs, considers the controversial 'prion' hypothesis as to the cause of the disease, the ocular features of vCJD, and the possible transmission of the disease via optoetric devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the degree of white matter pathology in the cerebral cortex in cases of variant Creutzfeldt-Jakob disease (vCJD) and to study the relationships between the white matter and grey matter pathologies. Hence, the pathological changes in cortical white matter were studied in individual gyri of the frontal, parietal, occipital, and temporal cortex in eleven cases of vCJD. Vacuolation (‘spongiform change’), deposition of the disease form of prion protein (PrPsc) in the form of discrete PrP deposits, and gliosis were observed in the white matter of virtually all cortical regions studied. Mean density of the vacuoles in the white matter was greater in the parietal lobe compared with the frontal, occipital, and temporal lobes but there were fewer glial cells in the occipital lobe compared with the other cortical regions. In the white matter of the frontal cortex, vacuole density was negatively correlated with the density of both glial cell nuclei and the PrP deposits. In addition, the densities of glial cells and PrP deposits were positively correlated in the frontal and parietal cortex. In the white matter of the frontal cortex and inferior temporal gyrus, there was a negative correlation between the densities of the vacuoles and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In addition, in the frontal cortex, vacuole density in the white matter was negatively correlated with the density of the diffuse PrP deposits in laminae II/III and V/VI of the adjacent grey matter. The densities of PrP deposits in the white matter of the frontal cortex were positively correlated with the density of the diffuse PrP deposits in laminae II/III and V/V1 and with the number of surviving neurons in laminae V/V1. The data suggest that in the white matter in vCJD, gliosis is associated with the development of PrP deposits while the appearance of the vacuolation is a later development. In addition, neuronal loss and PrP deposition in the lower cortical laminae of the grey matter may be a consequence of axonal degeneration within the white matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes: 1) the symptoms and pathology of CJD, 2) how prion proteins may cause CJD, 3) the visual signs and symptoms of CJD, and 4) the scientific evidence which supports a possible transmission of CJD via optometric devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In variant Creutzfeldt-Jakob disease (vCJD), a disease linked to bovine spongiform encephalopathy (BSE), florid-type prion protein (PrP(sc)) deposits are aggregated around the larger diameter (> 10 µm) cerebral microvessels. Clustering of PrP(sc) deposits around blood vessels may result from blood-borne prions or be a consequence of the cerebral vasculature influencing the development of the florid deposits. To clarify the factors involved, the dispersion of the florid PrP(sc) deposits was studied around the larger diameter microvessels in the neocortex, hippocampus, and cerebellum of ten cases of vCJD. In the majority of brain regions, florid deposits were clustered around the larger diameter vessels with a mean cluster size of between 50 µm and 628 µm. With the exception of the molecular layer of the dentate gyrus, the density of the florid deposits declined as a negative exponential function of distance from a blood vessel profile suggesting that diffusion of molecules from blood vessels is a factor in the formation of the florid deposits. Diffusion of PrP(sc) directly into the brain via the microvasculature has been demonstrated in vCJD in a small number of cases. However, the distribution of the prion deposits in vCJD is more likely to reflect molecular 'chaperones' diffusing from vessels and promoting the aggregation of pre-existing PrP(sc) in the vicinity of the vessels to form florid deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To quantify cortical white matter pathology in variant Creutzfeldt-Jakob disease (vCJD) and to correlate white and grey matter pathologies. Methods: Pathological changes were studied in immunolabeled sections of the frontal, parietal, occipital, and temporal cortex of eleven cases of vCJD. Results: Vacuolation ("spongiform change"), deposition of the disease form of prion protein (PrPsc), and a glial cell reaction were observed in the white matter. The density of the vacuoles was greatest in the white matter of the occipital cortex and glial cell density in the inferior temporal gyrus (ITG). Florid-type PrPsc deposits were present in approximately 50% of white matter regions studied. In the white matter of the frontal cortex (FC), vacuole density was negatively correlated with the densities of both glial cell nuclei and PrPsc deposits. In addition, in the frontal and parietal cortices the densities of glial cells and PrPsc deposits were positively correlated. In the FC and ITG, there was a negative correlation between the densities of the vacuoles in the white matter and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In the FC, vacuole density in the white matter was negatively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI of the adjacent grey matter. In addition, the densities of PrPsc deposits in the white matter of the FC were positively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI and with the number of surviving neurons in laminae V/VI. Conclusion: The data suggest significant degeneration of cortical white matter in vCJD; the vacuolation being related to neuronal loss in the lower cortical laminae of adjacent grey matter, PrPsc deposits the result of leakage from damaged axons, and gliosis a reaction to these changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this article was to determine whether the pathological changes of Creutzfeldt-Jacob disease (CJD) were related to the brain microcirculation. Hence, the spatial correlations between the vacuolation, prion protein (PrP) deposits, and the blood vessel profiles were studied in immunolabelled sections of the cerebral cortex, hippocampus, and cerebellum in two subtypes of CJD, viz., sporadic CJD (sCJD) and variant CJD (vCJD). In sCJD, both the vacuolation and the ‘synaptic-type’ PrP deposits were spatially correlated with the microvessels; the PrP deposits being more strongly correlated than the vacuoles. In vCJD, there were no significant spatial correlations between either the vacuolation or the diffuse-type of PrP deposit and the microvessels. By contrast, a consistent pattern of spatial correlation was observed in gyri of the cerebral cortex between the florid PrP deposits and microvessels. In both sCJD and vCJD, the frequency of positive spatial correlations was similar in the different gyri of the cerebral cortex and in the upper compared with the lower laminae. In conclusion, the microcirculation may be more significantly involved in determining the pathological changes in sCJD than in vCJD. The spatial correlations of the florid PrP deposits in vCJD and the synaptic deposits in sCJD and the blood vessels may be attributable to factors associated with the microcirculation which enhance the aggregation of PrP molecules rather than representing a possible haematogenous spread of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, a number of diseases believed to be caused by proteinaceous infectious agents called 'prions' have been described and collectively referred to as the 'transmissible spongiform encephalopathies'. Prions, which are composed mainly of protein, differ significantly from other infectious agents such as bacteria and viruses. However, they may, and have been reported to, cause visual symptoms, whilst the possible transfer of prions through optometric procedures has also been the subject of much debate. This article discusses the relevance of prions to optometric practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this chapter is to quantify the neuropathology of the cerebellar cortex in cases of the prion disease variant Creutzfeldt-Jakob disease (vCJD). Hence, sequential sections of the cerebellum of 15 cases of vCJD were stained with H/E, or immunolabelled with a monoclonal antibody 12F10 against prion protein (PrP) and studied using quantitative techniques and spatial pattern analysis. A significant loss of Purkinje cells was evident in all cases. Densities of the vacuolation and the protease resistant form of prion protein (PrPSc) in the form of diffuse and florid plaques were greater in the granule cell layer (GL) than the molecular layer (ML). In the ML, vacuoles and PrPSc plaques, occurred in clusters which were regularly distributed along the folia, larger clusters of vacuoles and diffuse plaques being present in the GL. There was a negative spatial correlation between the vacuoles and the surviving Purkinje cells in the ML and a positive spatial correlation between the clusters of vacuoles and the diffuse PrPSc plaques in the ML and GL in five and six cases respectively. A canonical variate analysis (CVA) suggested a negative correlation between the densities of the vacuolation in the GL and the diffuse PrPSc plaques in the ML. The data suggest: 1) all laminae of the cerebellar cortex were affected by the pathology of vCJD, the GL more severely than the ML, 2) the pathology was topographically distributed especially in the Purkinje cell layer and GL, 3) pathological spread may occur in relation to a loop of anatomical projections connecting the cerebellum, thalamus, cerebral cortex, and pons, and 4) there are differences in the pathology of the cerebellum in vCJD compared with the M/M1 subtype of sporadic CJD (sCJD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occipital lobe is one of the cortical areas most affected by the pathology of variant Creutzfeldt-Jakob disease (vCJD). To understand the visual problems of vCJD patients, neuropathological changes were studied in striate (B17, V1) and extrastriate (B18, V2) regions of the occipital cortex in eleven cases of vCJD. No differences in the density of vacuoles or surviving neurons were observed in B17 and B18 but densities of glial cell nuclei and deposits of the protease resistant form of prion protein (PrPsc) were greater in B18. The density of PrPsc deposits in B17 was positively correlated with their density in B18. The density of the diffuse PrPsc deposits in B17 was negatively correlated with the density of the surviving neurons in B18. In B17 and B18, the vacuoles either exhibited density peaks in laminae II/III and V/VI or were more uniformly distributed across the laminae. Diffuse PrPsc deposits were most frequent in laminae II/III and florid PrPsc deposits more generally distributed. In B18, the surviving neurons were more consistently bimodally distributed and the glial cell nuclei most abundant in laminae V/VI compared with B17. Hence, both striate and extrastriate areas of the occipital cortex are affected by the pathology of vCJD, the pathological changes being most severe in B18. Neuronal degeneration in B18 may be associated with the development of diffuse PrPsc deposits in B17. These data suggest that the short cortico-cortical connections between B17 and B18 and the pathways to subcortical visual areas are compromised in vCJD. Pathological changes in striate and extrastriate regions of the occipital cortex may contribute to several of the visual problems identified in patients with vCJD including oculomotor and visuo-spatial function. © 2012 Nova Science Publishers, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glia may be important in the pathology of variant Creutzfeldt-Jakob disease (vCJD) in several ways: (1) glial cells could be involved in the formation of prion protein (PrPsc) deposits, (2) PrPsc deposits could stimulate the production of astrocytes and microglia, (3) PrPsc deposits could damage adjacent glial cells, and (4) glial cells could remove PrPsc from the brain. To investigate the significance of glial cells in vCJD, the relationships between PrPsc deposits and their associated glia, together with neurons and blood vessels, was studied in six cases of vCJD. Multicentric PrPsc deposits were the largest and least frequent type of deposit observed and were more commonly associated with glial cells, neuronal perikarya, and blood vessels than the more common diffuse and florid PrPsc deposits. Diffuse PrPsc deposits were more frequently associated with glial cells and neurons than the florid deposits. The ratio of astrocytes to oligodendrocytes adjacent to PrPsc deposits was similar to normal brain but the ratio of astrocytes and oligodendrocytes to microglia was less than in normal brain. The intensity of immunolabelling of multicentric PrPsc deposits was positively correlated with the presence of associated vacuoles and negatively correlated with the frequency of microglia. The patterns of correlation between deposit morphology and associated glial cells and neurons were similar for the diffuse and florid type PrPsc deposits. Deposit size was most consistently correlated with the number of associated neurons and vacuoles. The data suggest in vCJD: (1) no evidence that glia were necessary for the formation of PrPsc deposits, (2) an increase in microglia which may be an attempt to remove PrPsc from the bain, and (3) PrPsc deposits could affect adjacent astrocytes and damage the blood brain barrier (BBB).