70 resultados para G-protein-coupled receptor
Resumo:
The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190 , N3.43240 , Q7.49394 , and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190 , N3.43240 , and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364 A, N3.43240 Q, Q7.49493N, and N3.43240 Q/Q7.49 Q/Q7.49493N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394 , but not R2.60190 /E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events.
Resumo:
Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins (RAMP) 2 and 3, respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMPs 2 and 3 on the activation and conformation of the CLR subunit of AM receptors we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors and determined the effects on cAMP signalling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modelling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket, and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function.
Resumo:
G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor conformational states, explaining the pharmacological preferences of calcitonin receptor-RAMP complexes. This provides novel insight into our understanding of G protein-coupled receptor-protein interaction that is likely broadly applicable for this receptor class.
Resumo:
The receptor for calcitonin-gene-related peptide (CGRP) is a heterodimer formed by calcitonin-receptor-like receptor (CRLR), a type II (family B) G-protein-coupled receptor, and receptor-activity-modifying protein 1 (RAMP1), a single-membrane-pass protein. It is likely that the first seven or so amino acids of CGRP (which form a disulphide-bonded loop) interact with the transmembrane domain of CRLR to cause receptor activation. The rest of the CGRP molecule falls into three domains. Residues 28-37 and 8-18 are normally required for high-affinity binding, while residues 19-27 form a hinge region. The 28-37 region is almost certainly in direct contact with the receptor; 8-18 may make additional receptor contacts or may stabilize an appropriate conformation of 28-37. It is likely that these regions of CGRP interact both with CRLR and with the extracellular domain of RAMP1.
Resumo:
Background Yeast is an important and versatile organism for studying membrane proteins. It is easy to cultivate and can perform higher eukaryote-like post-translational modifications. S. cerevisiae has a fully-sequenced genome and there are several collections of deletion strains available, whilst P. pastoris can produce very high cell densities (230 g/l). Results We have used both S. cerevisiae and P. pastoris to over-produce the following His6 and His10 carboxyl terminal fused membrane proteins. CD81 – 26 kDa tetraspanin protein (TAPA-1) that may play an important role in the regulation of lymphoma cell growth and may also act as the viral receptor for Hepatitis C-Virus. CD82 – 30 kDa tetraspanin protein that associates with CD4 or CD8 cells and delivers co-stimulatory signals for the TCR/CD3 pathway. MC4R – 37 kDa seven transmembrane G-protein coupled receptor, present on neurons in the hypothalamus region of the brain and predicted to have a role in the feast or fast signalling pathway. Adt2p – 34 kDa six transmembrane protein that catalyses the exchange of ADP and ATP across the yeast mitochondrial inner membrane. Conclusion We show that yeasts are flexible production organisms for a range of different membrane proteins. The yields are such that future structure-activity relationship studies can be initiated via reconstitution, crystallization for X-ray diffraction or NMR experiments.
Resumo:
The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-coupled receptor (GPCR) function in several ways. RAMPs can alter their pharmacology and signalling as well as the trafficking of these receptors to and from the cell surface. Accordingly, RAMPs may be exploited as drug targets, offering new opportunities for regulating the function of therapeutically relevant RAMP-interacting GPCRs. For example, several small molecule antagonists of RAMP1/ calcitonin receptor-like receptor complexes, which block the actions of the neuropeptide calcitonin gene-related peptide are in development for the treatment of migraine headache.
Resumo:
Calcitonin gene-related peptide (CGRP) plays a pivotal role in migraine, activating its cognate receptor to initiate intracellular signalling. This atypical receptor comprises a distinct assembly, made up of a G protein-coupled receptor (GPCR), a single transmembrane protein, and an additional protein that is required for Ga(s) coupling. By altering the expression of individual receptor components, it might be possible to adjust cellular sensitivity to CGRP. In recognition of the increasing clinical significance of CGRP receptors, it is timely to review the signalling pathways that might be controlled by this receptor, how the activity of the receptor itself is regulated, and our current understanding of the molecular mechanisms involved in these processes. Like many GPCRs, the CGRP receptor appears to be promiscuous, potentially coupling to several G proteins and intracellular pathways. Their precise composition is likely to be cell type-dependent, and much work is needed to ascertain their physiological significance.
Resumo:
The G-protein coupled receptor (GPCR) superfamily fulfils various metabolic functions and interacts with a diverse range of ligands. There is a lack of sequence similarity between the six classes that comprise the GPCR superfamily. Moreover, most novel GPCRs found have low sequence similarity to other family members which makes it difficult to infer properties from related receptors. Many different approaches have been taken towards developing efficient and accurate methods for GPCR classification, ranging from motif-based systems to machine learning as well as a variety of alignment-free techniques based on the physiochemical properties of their amino acid sequences. This review describes the inherent difficulties in developing a GPCR classification algorithm and includes techniques previously employed in this area.
Resumo:
MOTIVATION: There is much interest in reducing the complexity inherent in the representation of the 20 standard amino acids within bioinformatics algorithms by developing a so-called reduced alphabet. Although there is no universally applicable residue grouping, there are numerous physiochemical criteria upon which one can base groupings. Local descriptors are a form of alignment-free analysis, the efficiency of which is dependent upon the correct selection of amino acid groupings. RESULTS: Within the context of G-protein coupled receptor (GPCR) classification, an optimization algorithm was developed, which was able to identify the most efficient grouping when used to generate local descriptors. The algorithm was inspired by the relatively new computational intelligence paradigm of artificial immune systems. A number of amino acid groupings produced by this algorithm were evaluated with respect to their ability to generate local descriptors capable of providing an accurate classification algorithm for GPCRs.
Resumo:
Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43.
Resumo:
Background and Purpose The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. Experimental Approach We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand-receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. Key Results The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. Conclusions and Implications These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
The activation of phosphoinositide 3-hydroxykinase (P13K) is currently believed to represent the critical regulatory event which leads to the production of a novel intracellular signal. We have examined the control of this pathway by a number of cell-surface receptors in NG115-401L-C3 neuronal cells. Insulin-like growth factor-I stimulated the accumulation of 3-phosphorylated inositol lipids in intact cells and the appearance of P13K in antiphosphotyrosine-antibody-directed immunoprecipitates prepared from lysed cells, suggesting that P13K had been activated by a mechanism involving a protein tyrosine kinase. In contrast, P13K in these cells was not regulated by a variety of G-protein-coupled receptors, nerve growth factor acting via a low affinity receptor, or receptors for transforming growth factor-beta and interleukin-1. The receptor-specificity of P13K activation in these cells places significant constraints on the possible physiological function(s) of this pathway.
Resumo:
G-protein coupled receptors (GPCRs) typically have a functionally important C-terminus which, in the largest subfamily (family A), includes a membrane-parallel eighth helix. Mutations of this region are associated with several diseases. There are few C-terminal studies on the family B GPCRs and no data supporting the existence of a similar eighth helix in this second major subfamily, which has little or no sequence homology to family A GPCRs. Here we show that the C-terminus of a family B GPCR (CLR) has a disparate region from N400 to C436 required for CGRP-mediated internalization, and a proximal region of twelve residues (from G388 to W399), in a similar position to the family A eighth helix, required for receptor localization at the cell surface. A combination of circular and linear dichroism, fluorescence and modified waterLOGSY NMR spectroscopy (SALMON) demonstrated that a peptide mimetic of this domain readily forms a membrane-parallel helix anchored to the liposome by an interfacial tryptophan residue. The study reveals two key functions held within the C-terminus of a family B GPCR and presents support for an eighth helical region with striking topological similarity to the nonhomologous family A receptor. This helix structure appears to be found in most other family B GPCRs.
Resumo:
Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly Gq- and to a lesser extent Gs-mediated; p38 activation even had a small Gi-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.
Resumo:
G protein-coupled receptors (GPCRs) are successfully exploited as drug targets. As our understanding of how distinct GPCR subtypes can be generated expands, so do possibilities for therapeutic intervention via these receptors. Receptor activity-modifying proteins (RAMPs) are excellent examples of proteins that enhance diversity in. GPCR function. They facilitate the creation of binding pockets, controlling the pharmacology of some GPCRs. Moreover, they have the ability to regulate cell-surface trafficking, internalisation and signalling of GPCRs, creating novel opportunities for drug discovery. RAMPs could be directly targeted by drugs, or advantage could be taken of unique RAMP/GPCR interfaces for generating highly selective ligands.