35 resultados para FLOW MODELS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. Whereas the paper Alt et al. is focused on the experiments in the present paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combination of the two-fluid and drift flux models have been used to model the transport of fibrous debris. This debris is generated during loss of coolant accidents in the primary circuit of pressurized or boiling water nuclear reactors, as high pressure steam or water jets can damage adjacent insulation materials including mineral wool blankets. Fibre agglomerates released from the mineral wools may reach the containment sump strainers, where they can accumulate and compromise the long-term operation of the emergency core cooling system. Single-effect experiments of sedimentation in a quiescent rectangular column and sedimentation in a horizontal flow are used to verify and validate this particular application of the multiphase numerical models. The utilization of both modeling approaches allows a number of pseudocontinuous dispersed phases of spherical wetted agglomerates to be modeled simultaneously. Key effects on the transport of the fibre agglomerates are particle size, density and turbulent dispersion, as well as the relative viscosity of the fluid-fibre mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the state of the art in measuring, modeling, and managing clogging in subsurface-flow treatment wetlands. Methods for measuring in situ hydraulic conductivity in treatment wetlands are now available, which provide valuable insight into assessing and evaluating the extent of clogging. These results, paired with the information from more traditional approaches (e.g., tracer testing and composition of the clog matter) are being incorporated into the latest treatment wetland models. Recent finite element analysis models can now simulate clogging development in subsurface-flow treatment wetlands with reasonable accuracy. Various management strategies have been developed to extend the life of clogged treatment wetlands, including gravel excavation and/or washing, chemical treatment, and application of earthworms. These strategies are compared and available cost information is reported. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the development of a modelling study for part of the Birmingham area. Restricted access and model resolutions have limited wide applications of some of the previously developed models. The study area covers approximately 221 km2, and is underlain geologically, by a multi-layer setup with varied hydraulic properties. The basal aquifer unit is the Kidderminster sandstone Formation, overlain by the Wildmoor and Bromsgrove sandstone Formations. The presence of the Birmingham fault which acts as low permeability barrier demarcates the eastern and southern boundaries. The western boundary is defined by the presence of crystallised rocks and coal measures, while a groundwater divide defines the northern boundary. The estimated recharge flux is 112 mm/yr. The ranges of calibrated values obtained for horizontal and vertical hydraulic conductivities are 5.787x10-6 - 2.315x10-5  m/s and 5.787x10-8  - 1.157x10-7  m/s, respectively. Corresponding values obtained for the specific yield and specific storage are 0.10 - 0.12, and 1x10 -4 - 5x10 -4. The calculated numerical error is generally much less than 0.1 %. Hydraulic layering within the Permo-Triassic sandstone aquifer is thought to account for the large vertical anisotropy. Although, uncertainties are associated with the use of a simplistic delay approach to characterise the effects of the unsaturated zone, the modelled values are comparable with those obtained in the literature, and the flow pattern predictions appear to be realistic. © Research India Publications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.