38 resultados para External And Internal Mass Transfer
Resumo:
Colloidal stability and efficient interfacial charge transfer in semiconductor nanocrystals are of great importance for photocatalytic applications in aqueous solution since they provide long-term functionality and high photocatalytic activity, respectively. However, colloidal stability and interfacial charge transfer efficiency are difficult to optimize simultaneously since the ligand layer often acts as both a shell stabilizing the nanocrystals in colloidal suspension and a barrier reducing the efficiency of interfacial charge transfer. Here, we show that, for cysteine-coated, Pt-decorated CdS nanocrystals and Na2SO3 as hole scavenger, triethanolamine (TEOA) replaces the original cysteine ligands in situ and prolongs the highly efficient and steady H2 evolution period by more than a factor of 10. It is shown that Na2SO3 is consumed during H2 generation while TEOA makes no significant contribution to the H2 generation. An apparent quantum yield of 31.5%, a turnover frequency of 0.11 H2/Pt/s, and an interfacial charge transfer rate faster than 0.3 ps were achieved in the TEOA stabilized system. The short length, branched structure and weak binding of TEOA to CdS as well as sufficient free TEOA in the solution are the keys to enhancing colloidal stability and maintaining efficient interfacial charge transfer at the same time. Additionally, TEOA is commercially available and cheap, and we anticipate that this approach can be widely applied in many photocatalytic applications involving colloidal nanocrystals.
Resumo:
The density and spatial distribution of the vacuoles, glial cell nuclei and glial cytoplasmic inclusions (GCI) were studied in the white matter of various cortical and subcortical areas in 10 cases of multiple system atrophy (MSA). Vacuolation was more prevalent in subcortical than cortical areas and especially in the central tegmental tract. Glial cell nuclei widespread in all areas of the white matter studied; overall densities of glial cell nuclei being significantly greater in the central tegmental tract and frontal cortex compared with areas of the pons. The GCI were present most consistently in the external and internal capsules, the central tegmental tract and the white matter of the cerebellar cortex. The density of the vacuoles was greater in the MSA brains than in the control brains but glial cell density was similar in both groups. In the majority of areas, the pathological changes were distributed across the white matter randomly, uniformly, or in large diffuse clusters. In most areas, there were no spatial correlations between the vacuoles, glial cell nuclei and GCI. These results suggest: (i) there is significant degeneration of the white matter in MSA characterized by vacuolation and GCI; (ii) the central tegmental tract is affected significantly more than the cortical tracts; (iii) pathological changes are diffusely rather than topographically distributed across the white matter; and (iv) the development of the vacuoles and GCI appear to be unrelated phenomena. © 2007 Japanese Society of Neuropathology.
Resumo:
The literature relating to the drying characteristics of pure liquid drops and particulate slurry drops has been reviewed. The experimental investigation was, therefore, divided into three parts: Pure water drops, Aqueous sodium sulphate decahydrate drops, and, Slurry drops from nine detergent formulations. The value of the constant,'Ψ, reported by Ranz and Marshall, was found to be temperature dependent. In the temperature range o 26.5≤T≤118.5°C,Ψ , for pure water drops, varied between 0.38 and 0.47. A revised correlation of the mass transfer coefficients is therefore proposed. A mathematical model for estimating the variation of crust thickness, for aqueous sodium sulphate drops, with time is proposed: β = R _ {R3 - ( 1.5G/πCo ) ( ΔHD - ΔHU) Δ} 1/3 Experimental crust thickness evaluated from stereoscan micrographs showed good agreement with theoretical prediction. It has been shown that drying characteristics of detergent drops can be evaluated from the porosity:thickness ratio, {ε/\β}. Formulations having large {ε/β I-ratios dry better than those with smaller values. The agreement between the experimental and theoretical mass transfer coefficients shows, in addition to the above correlation, that the overall mass transfer coefficient can be predicted from the expression1/K = 1/K + β/DMε 1.5 The crust is the controlling resistance to transfer in particulate slurry drops. For aqueous sodium sulphate drops, the crust provides 64.2% of the total resistance while for detergents with thicker, but less porous crusts, the value is 97.5%.
Resumo:
Hierarchical ZnO “rod like” architecture was successfully synthesized via reverse micellar route and characterized by various techniques. The FESEM studies show controlled decomposition of zinc oxalate into ZnO “rod like” architecture at 500 °C with slow heat rate at 1°/min. Interestingly, improved photocatalytic activity was observed for the degradation of Rhodamine B, due to the self assembly of hexagonal nanoparticles of zinc oxide forming hierarchical ZnO “rod like” architecture which can greatly enhance the light utilization rate due to its special architecture and enlarge the specific surface area, providing more reaction sites and promoting mass transfer. More importantly, the reusability studies of this architecture were most economical.
Resumo:
Local mass transfer coefficients were determined by using the electrochemical technique. A simple model of a heat exchanger with segmental nickel tube joined to p.v.c. rods replaced the exchanger tubes. Measurements were made for both no-Ieakage, semi-leakage and total leakage configurations. Baffle-spacings of 47.6 mm, 66.6 mm, 97 mm and 149.2 mm wer studied. Also studied were the overall exchanger pressure drops for each configuration. The comparison of the heat transfer data with this work showed good agreement at high flow rates for the no-leakage case, but the agreement became poor for lower flow rates and leakage configurations. This disagreement was explained by non-analogous driving forces existing in the two systems. The no-leakage data showed length-wise variation of transfer coefficients along the exchanger length. The end compartments showing transfer coefficients inferior by up to 26% compared to tbe internal compartments, depending on Reynolds number. With the introduction of leakage streams this variation however became smaller than the experimental accuracy. A model is outlined to show the characteristic behaviour of individual electrode segments within the compartment. This was able to discriminate between cross and window zones for the no- leakage case, but no such distinction could be made for the leakage case. A flow area was found which, when incorporated in the Reynolds number, enabled the correlation of baffle-cut and baffle-spacing parameters for the no-leakage case . This area is the free flow area determined at the baffle edge. Addition of the leakage area to this flow area resulted in correlation of all commercial leakage geometrical parameters. The procedures used to correlate the pressure drop data from a total of eighteen different configurations on a single curve are also outlined.
Resumo:
Technological capabilities in Chinese manufacturing have been transformed in the last three decades. However, the extent to which domestic market oriented state owned enterprises (SOEs) have developed their capabilities is not clear. Six SOEs in the automotive, steel and machine tools sectors in Beijing and Tianjin have been studied since the mid-1990s to assess the capability levels attained and the role of external sources and internal efforts in developing them. Aided by government policies, acquisition of technology and their own efforts, the case study companies appear to be broadly following the East Asian late industrialisation model. All six enterprises demonstrate competences in operating established technology, managing investment and making product and process improvements. The evidence suggests that companies without foreign joint venture (JV) collaborations have made more progress in this respect.
Resumo:
Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.
Resumo:
Risk and knowledge are two concepts and components of business management which have so far been studied almost independently. This is especially true where risk management is conceived mainly in financial terms, as, for example, in the banking sector. The banking sector has sophisticated methodologies for managing risk, such as mathematical risk modeling. However. the methodologies for analyzing risk do not explicitly include knowledge management for risk knowledge creation and risk knowledge transfer. Banks are affected by internal and external changes with the consequent accommodation to new business models new regulations and the competition of big players around the world. Thus, banks have different levels of risk appetite and policies in risk management. This paper takes into consideration that business models are changing and that management is looking across the organization to identify the influence of strategic planning, information systems theory, risk management and knowledge management. These disciplines can handle the risks affecting banking that arise from different areas, but only if they work together. This creates a need to view them in an integrated way. This article sees enterprise risk management as a specific application of knowledge in order to control deviation from strategic objectives, shareholders' values and stakeholders' relationships. Before and after a modeling process it necessary to find insights into how the application of knowledge management processes can improve the understanding of risk and the implementation of enterprise risk management. The article presents a propose methodology to contribute to providing a guide for developing risk modeling knowledge and a reduction of knowledge silos, in order to improve the quality and quantity of solutions related to risk inquiries across the organization.