33 resultados para Effectiveness in real-life practice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research examines and explains the links between safety culture and communication. Safety culture is a concept that in recent years has gained prominence but there has been little applied research conducted to investigate the meaning of the concept in 'real life' settings. This research focused on a Train Operating Company undergoing change in a move towards privatisation. These changes were evident in the management of safety, the organisation of the industry and internally in their management. The Train Operating Company's management took steps to improve their safety culture and communications through the development of a cascade communication structure. The research framework employed a qualitative methodology in order to investigate the effect of the new system on safety culture. Findings of the research were that communications in the organisation failed to be effective for a number of reasons, including both cultural and logistical problems. The cultural problems related to a lack of trust in the organisation by the management and the workforce, the perception of communications as management propaganda, and asyntonic communications between those involved, whilst logistical problems related to the inherent difficulties of communicating over a geographically distributed network. An organisational learning framework was used to explain the results. It is postulated that one of the principal reasons why change, either to the safety culture or to communications, did not occur was because of the organisation's inability to learn. The research has also shown the crucial importance of trust between the members of the organisation, as this was one of the fundamental reasons why the safety culture did not change, and why safety management systems were not fully implemented. This is consistent with the notion of mutual trust in the HSC (1993) definition of safety culture. This research has highlighted its relevance to safety culture and its importance for organisational change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Semantic Web has come a long way since its inception in 2001, especially in terms of technical development and research progress. However, adoption by non- technical practitioners is still an ongoing process, and in some areas this process is just now starting. Emergency response is an area where reliability and timeliness of information and technologies is of essence. Therefore it is quite natural that more widespread adoption in this area has not been seen until now, when Semantic Web technologies are mature enough to support the high requirements of the application area. Nevertheless, to leverage the full potential of Semantic Web research results for this application area, there is need for an arena where practitioners and researchers can meet and exchange ideas and results. Our intention is for this workshop, and hopefully coming workshops in the same series, to be such an arena for discussion. The Extended Semantic Web Conference (ESWC - formerly the European Semantic Web conference) is one of the major research conferences in the Semantic Web field, whereas this is a suitable location for this workshop in order to discuss the application of Semantic Web technology to our specific area of applications. Hence, we chose to arrange our first SMILE workshop at ESWC 2013. However, this workshop does not focus solely on semantic technologies for emergency response, but rather Semantic Web technologies in combination with technologies and principles for what is sometimes called the "social web". Social media has already been used successfully in many cases, as a tool for supporting emergency response. The aim of this workshop is therefore to take this to the next level and answer questions like: "how can we make sense of, and furthermore make use of, all the data that is produced by different kinds of social media platforms in an emergency situation?" For the first edition of this workshop the chairs collected the following main topics of interest: • Semantic Annotation for understanding the content and context of social media streams. • Integration of Social Media with Linked Data. • Interactive Interfaces and visual analytics methodologies for managing multiple large-scale, dynamic, evolving datasets. • Stream reasoning and event detection. • Social Data Mining. • Collaborative tools and services for Citizens, Organisations, Communities. • Privacy, ethics, trustworthiness and legal issues in the Social Semantic Web. • Use case analysis, with specific interest for use cases that involve the application of Social Media and Linked Data methodologies in real-life scenarios. All of these, applied in the context of: • Crisis and Disaster Management • Emergency Response • Security and Citizen Journalism The workshop received 6 high-quality paper submissions and based on a thorough review process, thanks to our program committee, the decision was made to accept four of these papers for the workshop (67% acceptance rate). These four papers can be found later in this proceedings volume. Three out of four of these papers particularly discuss the integration and analysis of social media data, using Semantic Web technologies, e.g. for detecting complex events in social media streams, for visualizing and analysing sentiments with respect to certain topics in social media, or for detecting small-scale incidents entirely through the use of social media information. Finally, the fourth paper presents an architecture for using Semantic Web technologies in resource management during a disaster. Additionally, the workshop featured an invited keynote speech by Dr. Tomi Kauppinen from Aalto university. Dr. Kauppinen shared experiences from his work on applying Semantic Web technologies to application fields such as geoinformatics and scientific research, i.e. so-called Linked Science, but also recent ideas and applications in the emergency response field. His input was also highly valuable for the roadmapping discussion, which was held at the end of the workshop. A separate summary of the roadmapping session can be found at the end of these proceedings. Finally, we would like to thank our invited speaker Dr. Tomi Kauppinen, all our program committee members, as well as the workshop chair of ESWC2013, Johanna Völker (University of Mannheim), for helping us to make this first SMILE workshop a highly interesting and successful event!

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most pressing demands on electrophysiology applied to the diagnosis of epilepsy is the non-invasive localization of the neuronal generators responsible for brain electrical and magnetic fields (the so-called inverse problem). These neuronal generators produce primary currents in the brain, which together with passive currents give rise to the EEG signal. Unfortunately, the signal we measure on the scalp surface doesn't directly indicate the location of the active neuronal assemblies. This is the expression of the ambiguity of the underlying static electromagnetic inverse problem, partly due to the relatively limited number of independent measures available. A given electric potential distribution recorded at the scalp can be explained by the activity of infinite different configurations of intracranial sources. In contrast, the forward problem, which consists of computing the potential field at the scalp from known source locations and strengths with known geometry and conductivity properties of the brain and its layers (CSF/meninges, skin and skull), i.e. the head model, has a unique solution. The head models vary from the computationally simpler spherical models (three or four concentric spheres) to the realistic models based on the segmentation of anatomical images obtained using magnetic resonance imaging (MRI). Realistic models – computationally intensive and difficult to implement – can separate different tissues of the head and account for the convoluted geometry of the brain and the significant inter-individual variability. In real-life applications, if the assumptions of the statistical, anatomical or functional properties of the signal and the volume in which it is generated are meaningful, a true three-dimensional tomographic representation of sources of brain electrical activity is possible in spite of the ‘ill-posed’ nature of the inverse problem (Michel et al., 2004). The techniques used to achieve this are now referred to as electrical source imaging (ESI) or magnetic source imaging (MSI). The first issue to influence reconstruction accuracy is spatial sampling, i.e. the number of EEG electrodes. It has been shown that this relationship is not linear, reaching a plateau at about 128 electrodes, provided spatial distribution is uniform. The second factor is related to the different properties of the source localization strategies used with respect to the hypothesized source configuration.