38 resultados para Drugs Physiological effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: to determine the effect of drugs with anti-cholinergic properties on relevant health outcomes.Design: electronic published and unpublished literature/trial registries were systematically reviewed. Studies evaluating medications with anti-cholinergic activity on cognitive function, delirium, physical function or mortality were eligible.Results: forty-six studies including 60,944 participants were included. Seventy-seven percent of included studies evaluating cognitive function (n = 33) reported a significant decline in cognitive ability with increasing anti-cholinergic load (P < 0.05). Four of five included studies reported no association with delirium and increasing anti-cholinergic drug load (P > 0.05). Five of the eight included studies reported a decline in physical function in users of anti-cholinergics (P < 0.05). Three of nine studies evaluating mortality reported that the use of drugs with anti-cholinergic properties was associated with a trend towards increased mortality, but this was not statistically significant. The methodological quality of the evidence-base ranged from poor to very good.Conclusion: medicines with anti-cholinergic properties have a significant adverse effect on cognitive and physical function, but limited evidence exists for delirium or mortality outcomes. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes are well recognised for their ability to improve the delivery of a range of drugs. More commonly they are applied for the delivery of water-soluble drugs, but given their structural attributes, they can also be employed as solubilising agents for low solubility drugs as well as drug targeting agents. To further explore the potential of liposomes as solubilising agents, we have investigated the role of bilayer packaging in promoting drug solubilisation in liposome bilayers. The effect of alkyl chain length and symmetry was investigated to consider if using 'mis-matched' phospholipids could create 'voids' within the bilayers, and enhance bilayer loading capacity. Lipid packing was investigated using Langmuir studies, which demonstrated that increasing the alkyl chain length enhanced lipid packing, with condensed monolayers forming, whilst asymmetric lipids formed less condensed monolayers. However, this more open packing did not translate into improved drug loading, with the longer chain, condensed bilayers formed from long-chain, saturated lipids offering higher drug loading capacity. These studies demonstrate that liposomes formulated from longer chain, saturated lipids offer enhanced solubilisation capacity. However the molecular size, rather than lipophilicity, of the drug to be incorporated was also a key factor dominating bilayer incorporation efficiency. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo-oxygenase-2 selective inhibitor, NS-398, on a primary culture of guinea-pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase-3-like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N-Hexanoyl-D-sphingosine (C6-ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase-3-like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6-ceramide. The inhibitory effect of diclofenac on basal caspase-3-like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase-3-like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase-3-like activity in cell homogenates and also inhibited human recombinant caspase-3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea-pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The risk-to-benefit ratio for the use of low dose of aspirin in primary cardiovascular (CV) prevention in patients with diabetes mellitus remains to be clarified. We assessed the effect of aspirin on risk of CV events in type 2 diabetic patients with nephropathy, in order to verify the usefulness of Guidelines in clinical practice. We carried out a prospective multicentric study in 564 patients with type 2 diabetic nephropathy free of CV disease attending outpatient diabetes clinics. A total of 242 patients received antiplatelet treatment with aspirin 100 mg/day (group A), and 322 were not treated with antiplatelet drugs (group B). Primary end point was the occurrence of total major adverse cardio-vascular events (MACE). Secondary end points were the relative occurrence of fatal MACE. The average follow-up was 8 years. Total MACE occurred in 49 patients from group A and in 52 patients from group B. Fatal MACE occurred in 22 patients from group A and in 20 from group B; nonfatal MACE occurred in 27 patients from group A and in 32 patients from group B. Kaplan-Meier analysis did not show a statistically significant difference of cumulative MACE between the two groups. A not statistically significant difference in the incidence of both fatal (p = 0.225) and nonfatal CV events (p = 0.573) between the two groups was observed. These results were confirmed after adjustment for confounders (HR for MACE 1.11, 95 % CI 0.91-1.35). These findings suggest that low dose of aspirin is ineffective in primary prevention for patients with nephropathy. © 2014 Springer-Verlag Italia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With an ageing population and increasing prevalence of central-nervous system (CNS) disorders new approaches are required to sustain the development and successful delivery of therapeutics into the brain and CNS. CNS drug delivery is challenging due to the impermeable nature of the brain microvascular endothelial cells that form the blood-brain barrier (BBB) and which prevent the entry of a wide range of therapeutics into the brain. This review examines the role intranasal delivery may play in achieving direct brain delivery, for small molecular weight drugs, macromolecular therapeutics and cell-based therapeutics, by exploitation of the olfactory and trigeminal nerve pathways. This approach is thought to deliver drugs into the brain and CNS through bypassing the BBB. Details of the mechanism of transfer of administrated therapeutics, the pathways that lead to brain deposition, with a specific focus on therapeutic pharmacokinetics, and examples of successful CNS delivery will be explored. © 2014 Bentham Science Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy drinks have become very popular over the past few years with over half the student population in colleges and universities consuming them at least once a month (Malinauskas et al., 2007). It has been reported that the most common reasons why students consume energy drinks are to maintain alertness, reduce symptoms of hangover, increase energy, to help with driving and to prevent sleepiness (Attila and Cakir, 2011; Malinauskas et al., 2007). Previous research has suggested that energy drinks enhance sensorimotor speed, behaviour, and reduce levels of fatigue (Alford et al., 2001; Horne and Reyner, 2001; Howard and Marczinski, 2010; Kennedy and Scholey, 2004; Smit et al., 2004). The two key ingredients found in energy drinks are caffeine and glucose which have been examined together and alone, which have indicated enhanced reaction times, improvement in both verbal memory and sustained attention and more recently there is evidence to show that expectancy may play a key role in predicting intentions of future consumption (Adan and serra-Grabulosa, 2010). According to Kirsch (1997) people have specific expectations when they consume psychoactive substances that trigger physiological and psychological reactions, which tend to be independent of the psychoactive substance ingested. The concept of expectancy effects can be unambiguous especially when the information provided to the participants prior to the experimental study is specific to a possible outcome response. This thesis investigated the extent of expectancy effect on cognition and mood when psychoactive drinks containing caffeine and glucose were consumed in comparison to non-psychoactive drinks. The investigation commenced with examining the independent effects of caffeine and glucose, followed by the combination of caffeine and glucose as an energy drink on mood and cognition. The investigation advanced by comparing drink presentation effects (i.e., consuming the experimental drink from a branded bottle versus from a glass) irrespective of drink content on mood and cognition. Finally, the investigation lead to exploring what factors may predict expectancy effects when participants’ consumed psychoactive drinks among healthy adults. This was done by applying the Theory of Planned Behaviour model (TPB) (Azjen, 1991) to explore the contribution of specific attitudes, subjective norms and perceived behavioural control to the extent of expectancy effects as well as to behavioural intention, with additional variables including; beliefs, habits, past-behaviour, selfidentity. Self-identity representing someone who drinks energy drinks regularly. The level of internal consistency for Cronbach’s alpha was conducted for each variable within the TPB model and for the additional variables included for test reliability. This thesis consisted of four studies, which found that consumption of caffeine and glucose independently and also in combination resulted in psychoactive effects on mood and cognition. Experiment 2 was the only study, which indicated an expectancy effect for immediate verbal recall task and the mood subscale tension. Conversely, for experiment 4 there was a reverse effect found for the immediate verbal recall task. However, there were significant expectancy and psychoactive effects found for mood subscales throughout the four studies. It was also found that the TPB model had two significant variables past-behaviour and self-identity predicted intentions suggesting that participants who regularly consume psychoactive beverages have salient beliefs about consuming psychoactive drinks and the TPB model can be utilised to predict their intentions. Furthermore, the Theory of planned behaviour model found that habit and self-identity significantly predicted participants’ expectancy effects on the vigour. Indicating consumers of energy drinks are familiar with expected outcome response. This model was unsuccessful in predicting expectancy response for cognitive performance. Thus, overall the findings from the four studies indicated that caffeine and glucose have cognitive enhancing properties, which also positively improve mood. However, expectancy effects have been identified for mood only, whereas the overall findings within this thesis were unable to identify significant predictors of expectancy effect and response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although most anti-epileptic drugs are considered to have a primary molecular target, it is clear that their actions are unlikely to be limited to effects on a single aspect of inhibitory synaptic transmission, excitatory transmission or voltage-gated ion channels. Systemically administered drugs can obviously simultaneously access all possible targets, so we have attempted to determine the overall effect of diverse agents on the balance between GABAergic inhibition, glutamatergic excitation and cellular excitability in neurones of the rat entorhinal cortex in vitro. We used an approach developed for estimating global background synaptic excitation and inhibition from fluctuations in membrane potential obtained by intracellular recordings. We have previously validated this approach in entorhinal cortical neurones [. Greenhill and Jones (2007a) Neuroscience 147:884-892]. Using this approach, we found that, despite their differing pharmacology, the drugs tested (phenytoin, lamotrigine, valproate, gabapentin, felbamate, tiagabine) were unified in their ability to increase the ratio of background GABAergic inhibition to glutamatergic excitation. This could occur as a result of decreased excitation concurrent with increased inhibition (phenytoin, lamotrigine, valproate), a decrease in excitation alone (gabapentin, felbamate), or even with a differential increase in both (tiagabine). Additionally, we found that the effects on global synaptic conductances agreed well with whole cell patch recordings of spontaneous glutamate and GABA release (our previous studies and further data presented here). The consistency with which the synaptic inhibition:excitation ratio was increased by the antiepileptic drugs tested was matched by an ability of all drugs to concurrently reduce intrinsic neuronal excitability. Thus, it seems possible that specific molecular targets among antiepileptic drugs are less important than the ability to increase the inhibition:excitation ratio and reduce overall neuronal and network excitability. © 2010 IBRO.