37 resultados para Drugs - Structure-activity relationships
Resumo:
The methylation of cytosinc residues in DNA is thought to play an important role in the regulation of gene expression, with active genes generally being hypomethylated. With this in mind peptides were synthcsised to mimic the cytosine-5 methylation activity carried out by DNA mcthylase, which however, showed no ability to carry out this function. The imidazotetrazinoncs are a novel group of antitumour agents which have demonstrated good activity against a range of murinc tumours and human tumour xenografts, and hypomethylation of DNA has been implicated in the mechanism of action. Studies have been conducted on the mechanism by which such agents cause hypomethylation, using DNA methylase partially purified from murine L1210 leukaemia cells. Unmodified calf thymus DNA does not inhibit the transfer of methyl groups from SAM to M.lysodeikticus DNA by partially purified DNA methylase. However, if the calf thymus DNA is modified by alkylating agents such as imida-zotetrazinones or nitrosoureas, the treated DNA becomes an inhibitor of the methylation reaction. This has been correlated with the induction of DNA damage, such as single strand breaks, since X-ray treated DNA and deoxyribonuclease treatment produces a similar effect. The mechanism of inhibition by the drug treated or damaged DNA is thought to occur by binding of the enzyme to an increased concentration of non-substrate DNA, presumably by the occurrence of single strand breaks, since neither sonication nor treatment with the restriction enzyme Mspl caused an inhibition. Attempts were made to elucidate the strict structure activity relationship for antitumour activity observed amongst the imidazotctrazinones. The transfection of a murine colon adcnocarcinoma cell line (MAC 13) with DNA extracted from GM892 or Raji cells previously treated with either the methyl (temozolomide) or ethyl (ethazolastone) imidazotetrazinone was performed. X-irradiated DNA did not cause any suppression of cell growth, suggesting that it was not due to physical damage. Transfection of MAC 13 cells with DNA extracted from GM892 cells, was more effective at inhibiting growth than DNA from Raji cells. Temozolomide treated cellular DNA was a more potent growth inhibitor than that from ethazolastone treated cells. For both agents the growth inhibitory effect was most marked with DNA extracted 6h after drug addition, and after 24h no growth suppression was observed. This suggested that the growth inhibitory effect is due to a repairable lesion. .The methylation of M.lysodeikticus DNA by DNA methylase is inhibited potently and specifically by both hereto and homoribo and dcoxyri-bopolynucleotides containing guanine residues. The inhibitory effect is unaffected by chain length or sugar residue, but is abolished when the O-6 residue of guanine is substituted as in poly d(OGG)2o. Potent inhibition is also shown by polyinosinic and polyxanthylic acids but not by polyadenylic acid or by heteropolymers containing adcnine and thymine. These results suggest that the 6 position of the purine nucleus is important in binding of the DNA methylase to particular regions of the DNA and that the hydrogen bonding properties of this group are important in enzyme recognition. This was confirmed using synthetic oligonucleotides as substrates for DNA methylase. Enzymatic methylation of cytosine is completely suppressed, when O6 methylguanine replaces guanine in CG sites.
Resumo:
3-Amino-1,4-benzodiazepines as well as chemically related diverse amines were prepared from oxazepam and subsequently screened on the cholecystokinin receptor in a radiolabel binding assay. Oxazepam 2 was activated via its 3-chloro-1,4-benzodiazepine intermediate 3 and was reacted with a large series of aliphatic and aromatic amines. The substituted 3-anilino-1,4-benzodiazepine structure was identified as lead structure in a diverse series of 3-amino-1,4-benzodiazepines 4-38 and the full SAR (structure-activity relationship) optimisation provided 3-anilinobenzodiazepines 16-38 with CCK 1 receptor selectivity to CCK 2. The compounds 18, 24, 28 and 33 have shown affinities at the CCK 1 receptor of 11, 10, 11 and 9 nM, respectively. These equipotent CCK 1 ligands were fully evaluated in behaviour pharmacological essays. An antidepressant effect was identified in the tail suspension- and the Porsolt swimming-test. The ED 50 values for 24 and 28 were determined in these assays as 0.46 and 0.49 mg/kg. The mixed antagonist 37 showed in addition to the antidepressant effects anxiolytic properties. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
The structure-activity relationship optimization of the pyrazoline template 3a resulted in novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides 4a-4e. These non-peptidal CCK ligands have been shown to act as potent CCK 1 ligands in a [125]I-CCK-8 receptor binding assay. The best amides (4c and 4d) of this series displayed an IC50 of 20/25 CCK 1 for the CCK 1 receptor. In a subsequent in-vivo evaluation using various behaviour pharmacological assays, an anxiolytic effect of these novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides was found at high doses in the elevated plus-maze. In the despair swimming test, a model for testing antidepressants, an ED50 of 0.33/0.41 mg kg -1 was determined for amide 4c/4d and the antidepressant effect had a magnitude comparable to desimipramine. © 2006 The Authors.
Resumo:
Poly(styrene-co-maleic anhydride) (PSMA) based copolymers are known to undergo conformational transition in response to environmental stimuli. This smart behaviour makes it possible to mimic the behaviour of native apoproteins. The primary aim of this study was to develop a better understanding of the structure-property relationships of various PSMA-based copolymers sought. The work undertaken in this thesis has revealed that the responsive behaviour of PSMA-based copolymers can be tailored by varying the molecular weight, hydrophobic (styrene) and hydrophilic (maleic acid) balance, and more so in the presence of additional hydrophobic, mono-partial ester moieties. Novel hydrophilic and hydrophobic synthetic surfactant protein analogues have successfully been prepared. These novel lipid solubilising agents possess a broad range of HLB (hydrophilic-lipophilic balance) values that have been estimated. NMR spectroscopy was utilised to confirm the structures for PSMA-based copolymers sought and proved useful in furthering understanding of the structure-property relationships of PSMA-based copolymers. The association of PSMA with the polar phospholipid, 2-dilauryl-sn-glycero-3- phosphocholine (DLPC) produces polymer-lipid complexes analogous to lipoprotein assemblies present in the blood plasma. NMR analysis reveals that the PSMA-based copolymers are not perfectly alternating. Regio-irregular structures, atactic and random monomer sequence distribution have been identified for all materials studied. Novel lipid solubilising agents (polyanionic surfactants) have successfully been synthesised from a broad range of PSMA-based copolymers with desired estimated HLB values that interact with polar phospholipids (DLPC/DPPC) uniquely. Very low static and dynamic surface tensions have been observed via the du Noϋy ring method and Langmuir techniques and correlate well with the estimated HLB values. Synthetic protein-lipid analogues have been successfully synthesised, that mimic the unique surface properties of native biological lubricants without the use of solvents. The novel PSMA-DLPC complexes have successfully been combined with hyaluronan (hyaluronic acid, HA). Today, the employment of HA is economically feasible, because it is readily available from bacterial fermentation processes in a thermally stable form - HyaCare®. The work undertaken in this thesis highlights the usage of HA in biolubrication applications and how this can be optimised and thus justified by carefully selecting the biological source, concentration, molecular weight, purity and most importantly by combining it with compatible boundary lubricating agents (polar phospholipids). Experimental evidence supports the belief that the combined HA and PSMA-DLPC complexes provide a balance of rheological, biotribological and surface properties that are composition dependent, and show competitive advantage as novel synthetic biological lubricants (biosurfactants).
Resumo:
This chapter deals with the physicochemical aspects of structure-property relationships in synthetic hydrogels, with particular reference to their application in optometry and ophthalmology. It demonstrates the ways in which the amount of water contained in the hydrogel network can be manipulated by changes in copolymer composition and illustrates the advantages and limitations imposed by use of water as a means of influencing surface, transport and mechanical properties of the gel. The chapter then illustrates how this basic understanding has formed a platform for the development of synthetic interpenetrating networks and macroporous materials, and of hybrids of natural and synthetic hydrogels. The behaviour of these more complex systems is not so centrally dominated by the equilibrium water content as is the case with homogeneous synthetic hydrogels, thus providing advantageous ways of extending the properties and applications of these interesting materials.
Resumo:
Single crystal X-ray structure determinations are reported for eleven compounds all of which are either biologically active or potentially biologically important. The compounds fall into two distinct classes:- 1. Substituted diaminopyrimidines 2. Substituted aminopyrimidinones The first class of compounds were all selected on the basis of their common diaminopyrimidine nucleus which has been demonstrated to be a vital requirement for antifolate activity. They may all be described as non-classical or small molecule lipophilic dihydrofolate reductase (DHFR) inhibitors, as opposed to the classical folate analogues, having the ability to cross the blood-brain barrier, enter cells via a rapid passive diffusion process, and achieve high intracellular concentrations. Thus they are an excellent choice in the search for crystallography in the solid state, providing geometrical and distance data not available from any other analytical techniques to date; supporting and enhancing data obtained in the lower resolution studies of protein crystallography. The biological importance of these compounds is discussed and an attempt is made to relate/predict their pharmacological activity to observed structural features in the crystalline environment. Special attention is focussed on hydrogen bonding, confirmational flexibility and hydrophobicity of substituents; each of which appear to make contributions to tight binding in the enzyme active site. Chapter 9 describes the use of data from the literature and the solid state modelling of an observed enzyme-substrate interaction in an attempt to define it more accurately in terms of its geometric flexibility. Of the second class, one compound (ABPP) is reported; studies in two different crystal forms. In demonstrating both antiviral and high interferon inducing activity it is possible that this compound could be useful against cancer and also viral infections.
Resumo:
Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine.