43 resultados para Data classification
Resumo:
Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
This research describes a computerized model of human classification which has been constructed to represent the process by which assessments are made for psychodynamic psychotherapy. The model assigns membership grades (MGs) to clients so that the most suitable ones have high values in the therapy category. Categories consist of a hierarchy of components, one of which, ego strength, is analysed in detail to demonstrate the way it has captured the psychotherapist's knowledge. The bottom of the hierarchy represents the measurable factors being assessed during an interview. A questionnaire was created to gather the identified information and was completed by the psychotherapist after each assessment. The results were fed into the computerized model, demonstrating a high correlation between the model MGs and the suitability ratings of the psychotherapist (r = .825 for 24 clients). The model has successfully identified the relevant data involved in assessment and simulated the decision-making process of the expert. Its cognitive validity enables decisions to be explained, which means that it has potential for therapist training and also for enhancing the referral process, with benefits in cost effectiveness as well as in the reduction of trauma to clients. An adapted version measuring client improvement would give quantitative evidence for the benefit of therapy, thereby supporting auditing and accountability. © 1997 The British Psychological Society.
Resumo:
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision making units (DMUs) that use multiple inputs to produce multiple outputs. Crisp input and output data are fundamentally indispensable in conventional DEA. However, the observed values of the input and output data in real-world problems are sometimes imprecise or vague. Many researchers have proposed various fuzzy methods for dealing with the imprecise and ambiguous data in DEA. This chapter provides a taxonomy and review of the fuzzy DEA (FDEA) methods. We present a classification scheme with six categories, namely, the tolerance approach, the α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy arithmetic, and the fuzzy random/type-2 fuzzy set. We discuss each classification scheme and group the FDEA papers published in the literature over the past 30 years. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
One of the main challenges of classifying clinical data is determining how to handle missing features. Most research favours imputing of missing values or neglecting records that include missing data, both of which can degrade accuracy when missing values exceed a certain level. In this research we propose a methodology to handle data sets with a large percentage of missing values and with high variability in which particular data are missing. Feature selection is effected by picking variables sequentially in order of maximum correlation with the dependent variable and minimum correlation with variables already selected. Classification models are generated individually for each test case based on its particular feature set and the matching data values available in the training population. The method was applied to real patients' anonymous mental-health data where the task was to predict the suicide risk judgement clinicians would give for each patient's data, with eleven possible outcome classes: zero to ten, representing no risk to maximum risk. The results compare favourably with alternative methods and have the advantage of ensuring explanations of risk are based only on the data given, not imputed data. This is important for clinical decision support systems using human expertise for modelling and explaining predictions.
Resumo:
The purpose of this paper is to investigate the technological development of electronic inventory solutions from perspective of patent analysis. We first applied the international patent classification to classify the top categories of data processing technologies and their corresponding top patenting countries. Then we identified the core technologies by the calculation of patent citation strength and standard deviation criterion for each patent. To eliminate those core innovations having no reference relationships with the other core patents, relevance strengths between core technologies were evaluated also. Our findings provide market intelligence not only for the research and development community, but for the decision making of advanced inventory solutions.
Resumo:
Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.
Resumo:
Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.
Resumo:
Diabetes patients might suffer from an unhealthy life, long-term treatment and chronic complicated diseases. The decreasing hospitalization rate is a crucial problem for health care centers. This study combines the bagging method with base classifier decision tree and costs-sensitive analysis for diabetes patients' classification purpose. Real patients' data collected from a regional hospital in Thailand were analyzed. The relevance factors were selected and used to construct base classifier decision tree models to classify diabetes and non-diabetes patients. The bagging method was then applied to improve accuracy. Finally, asymmetric classification cost matrices were used to give more alternative models for diabetes data analysis.
Resumo:
Sentiment classification over Twitter is usually affected by the noisy nature (abbreviations, irregular forms) of tweets data. A popular procedure to reduce the noise of textual data is to remove stopwords by using pre-compiled stopword lists or more sophisticated methods for dynamic stopword identification. However, the effectiveness of removing stopwords in the context of Twitter sentiment classification has been debated in the last few years. In this paper we investigate whether removing stopwords helps or hampers the effectiveness of Twitter sentiment classification methods. To this end, we apply six different stopword identification methods to Twitter data from six different datasets and observe how removing stopwords affects two well-known supervised sentiment classification methods. We assess the impact of removing stopwords by observing fluctuations on the level of data sparsity, the size of the classifier's feature space and its classification performance. Our results show that using pre-compiled lists of stopwords negatively impacts the performance of Twitter sentiment classification approaches. On the other hand, the dynamic generation of stopword lists, by removing those infrequent terms appearing only once in the corpus, appears to be the optimal method to maintaining a high classification performance while reducing the data sparsity and substantially shrinking the feature space
Resumo:
In order to reduce serious health incidents, individuals with high risks need to be identified as early as possible so that effective intervention and preventive care can be provided. This requires regular and efficient assessments of risk within communities that are the first point of contacts for individuals. Clinical Decision Support Systems CDSSs have been developed to help with the task of risk assessment, however such systems and their underpinning classification models are tailored towards those with clinical expertise. Communities where regular risk assessments are required lack such expertise. This paper presents the continuation of GRiST research team efforts to disseminate clinical expertise to communities. Based on our earlier published findings, this paper introduces the framework and skeleton for a data collection and risk classification model that evaluates data redundancy in real-time, detects the risk-informative data and guides the risk assessors towards collecting those data. By doing so, it enables non-experts within the communities to conduct reliable Mental Health risk triage.
Resumo:
The accuracy of a map is dependent on the reference dataset used in its construction. Classification analyses used in thematic mapping can, for example, be sensitive to a range of sampling and data quality concerns. With particular focus on the latter, the effects of reference data quality on land cover classifications from airborne thematic mapper data are explored. Variations in sampling intensity and effort are highlighted in a dataset that is widely used in mapping and modelling studies; these may need accounting for in analyses. The quality of the labelling in the reference dataset was also a key variable influencing mapping accuracy. Accuracy varied with the amount and nature of mislabelled training cases with the nature of the effects varying between classifiers. The largest impacts on accuracy occurred when mislabelling involved confusion between similar classes. Accuracy was also typically negatively related to the magnitude of mislabelled cases and the support vector machine (SVM), which has been claimed to be relatively insensitive to training data error, was the most sensitive of the set of classifiers investigated, with overall classification accuracy declining by 8% (significant at 95% level of confidence) with the use of a training set containing 20% mislabelled cases.
Resumo:
In this paper, the problem of semantic place categorization in mobile robotics is addressed by considering a time-based probabilistic approach called dynamic Bayesian mixture model (DBMM), which is an improved variation of the dynamic Bayesian network. More specifically, multi-class semantic classification is performed by a DBMM composed of a mixture of heterogeneous base classifiers, using geometrical features computed from 2D laserscanner data, where the sensor is mounted on-board a moving robot operating indoors. Besides its capability to combine different probabilistic classifiers, the DBMM approach also incorporates time-based (dynamic) inferences in the form of previous class-conditional probabilities and priors. Extensive experiments were carried out on publicly available benchmark datasets, highlighting the influence of the number of time-slices and the effect of additive smoothing on the classification performance of the proposed approach. Reported results, under different scenarios and conditions, show the effectiveness and competitive performance of the DBMM.