39 resultados para Computer Knowledge Bank on Medical Diagnostics
Resumo:
Many studies have accounted for whole body vibration effects in the fields of exercise physiology, sport and rehabilitation medicine. Generally, surface EMG is utilized to assess muscular activity during the treatment; however, large motion artifacts appear superimposed to the raw signal, making sEMG recording not suitable before any artifact filtering. Sharp notch filters, centered at vibration frequency and at its superior harmonics, have been used in previous studies, to remove the artifacts. [6, 10] However, to get rid of those artifacts some true EMG signal is lost. The purpose of this study was to reproduce the effect of motor-unit synchronization on a simulated surface EMG during vibratory stimulation. In addition, authors mean to evaluate the EMG power percentage in those bands in which are also typically located motion artifact components. Model characteristics were defined to take into account two main aspect: the muscle MUs discharge behavior and the triggering effects that appear during local vibratory stimulation. [7] Inter-pulse-interval, was characterized by a polimodal distribution related to the MU discharge frequency (IPI 55-80ms, σ=12ms) and to the correlation with the vibration period within the range of ±2 ms due to vibration stimulus. [1, 7] The signals were simulated using different stimulation frequencies from 30 to 70 Hz. The percentage of the total simulated EMG power within narrow bands centered at the stimulation frequency and its superior harmonics (± 1 Hz) resulted on average about 8% (± 2.85) of the total EMG power. However, the artifact in those bands may contain more than 40% of the total power of the total signal. [6] Our preliminary results suggest that the analysis of the muscular activity of muscle based on raw sEMG recordings and RMS evaluation, if not processed during vibratory stimulation may lead to a serious overestimation of muscular response.
Resumo:
Whole body vibration (WBV) aims to mechanically activate muscles by eliciting stretch reflexes. Mechanical vibrations are usually transmitted to the patient body standing on a oscillating plate. WBV is now more and more utilized not only for fitness but also in physical therapy, rehabilitation and in sport medicine. Effects depend on intensity, direction and frequency of vibration; however, the training frequency is one of the most important factors involved. A preliminary vibratory session can be dedicated to find the best vibration frequency for each subject by varying, stepwise, the stimulation frequency and analyzing the resulting EMG activity. This study concentrates on the analysis of muscle motion in response to a vibration frequency sweep, while subjects held two different postures. The frequency of a vibrating platform was increased linearly from 10 to 60 Hz in 26 s, while platform and single muscles (Rectus Femoris, Biceps Femoris - long head and Gastrocnemius Lateralis) motions were monitored using tiny, lightweight three-axial MEMS accelerometers. Displacements were estimated integrating twice the acceleration data after gravity contribution removal. Mechanical frequency response (amplitude and phase) of the mechanical chains ending at the single muscles was characterized. Results revealed a mechanical resonant-like behavior at some muscles, very similar to a second-order system in the frequency interval explored; resonance frequencies and dumping factors depended on subject and its positioning onto the vibrating platform. Stimulation at the resonant frequency maximizes muscle lengthening, and in turn muscle spindle solicitation, which produce muscle activation. © 2009 Springer-Verlag.
Resumo:
A valuable alternative to US cardiotocography, for fetal surveillance, can be offered by phonocardiography, a passive and low cost acoustic recording of fetal heart sounds. A crucial point is the exact recognizing of the fetal heart sounds, associated to each fetal heart beat, and then the estimation of FHR signal. In this work, software for FHR assessment from phonocardiographic signals was developed. To check the reliability of the software, obtained results were compared with those of simultaneously recorded cardiotocographic signals. Results seemed to be satisfying, as provided FHR series were almost all confined within FHR-CTG +/- 3 bpm, where FHR-CTG were FHR series provided by commercial US cardiotocographic devices, currently employed in clinical routine.
Resumo:
Technological advances have driven some attempt of vital parameters monitoring in adverse environments; these improvements will make possible to monitor cardiac activity also in automotive environments. In this scenario, heart rate changes associated with alcohol consumption, become of great importance to assess the drivers state during time. This paper presents the results of a first set of experiments aimed to discover heart rate variability modification induced by moderate assumption of alcoholic drink (i.e. single draft beer) as that typically occurs in weekend among some people. In the study, twenty subjects were enrolled and for each of them two electrocardiographic recordings were carried out: the first before alcohol ingestion and the second after 25-30 minutes. Each participant remained fasting until the second ECG acquisition was completed. ECG signal were analyzed by typical timedomain, frequency and non linear analysis. Results showed a small increase in LF/HF ratio which reflects a dominance of the sympathetic system over the parasympathetic system, and an increase in signal complexity as proven by non linear analysis. However, the study highlighted the need to monitor HRV starting from alcohol ingestion until its complete metabolization to allow a more precise description of its variation. © Springer International Publishing Switzerland 2014.
Resumo:
Risk management in healthcare represents a group of various complex actions, implemented to improve the quality of healthcare services and guarantee the patients safety. Risks cannot be eliminated, but it can be controlled with different risk assessment methods derived from industrial applications and among these the Failure Mode Effect and Criticality Analysis (FMECA) is a largely used methodology. The main purpose of this work is the analysis of failure modes of the Home Care (HC) service provided by local healthcare unit of Naples (ASL NA1) to focus attention on human and non human factors according to the organization framework selected by WHO. © Springer International Publishing Switzerland 2014.
Resumo:
The use of electrocardiogram as biometric has raised attention in the last decade and a wide variety of ECG features were explored to verify the feasibility of such a signal. In this work the authors aim to describe a simple template based approach to the electrocardiographic biometric identification using the morphology of individual's heartbeat. The developed algorithm was tested on different recordings made available in the Physionet public database Fantasia: two different sets of heartbeats were extracted from individual recordings one was used for the template building while the second for the tests. The performances of the algorithm are encouraging with a true acceptance rate of 99.4%, however, the procedure needs to be tested on different recordings of the same individual, or during the course of a whole day or physical activity. © 2013 IEEE.
Resumo:
The impact of whole body vibrations (vibration stimulus mechanically transferred to the body) on muscular activity and neuromuscular response has been widely studied but without standard protocol and by using different kinds of exercises and parameters. In this study, we investigated how whole body vibration treatments affect electromyographic signal of rectus femoris during static and dynamic squat exercises. The aim was the identification of squat exercise characteristics useful to maximize neuromuscular activation and hence progress in training efficacy. Fourteen healthy volunteers performed both static and dynamic squat exercises without and with vibration treatments. Surface electromyographic signals of rectus femoris were recorded during the whole exercise and processed to reduce artifacts and to extract root mean square values. Paired t-test results demonstrated an increase of the root mean square values (p<0.05) in both static and dynamic squat exercises with vibrations respectively of 63% and 108%. For each exercise, subjects gave a rating of the perceived exertion according to the Borg's scale but there were no significant changes in the perceived exertion rate between exercises with and without vibration. Finally, results from analysis of electromyographic signals identified the static squat with WBV treatment as the exercise with higher neuromuscular system response. © 2012 IEEE.
Resumo:
Long term recording of biomedical signals such as ECG, EMG, respiration and other information (e.g. body motion) can improve diagnosis and potentially monitor the evolution of many widespread diseases. However, long term monitoring requires specific solutions, portable and wearable equipment that should be particularly comfortable for patients. The key-issues of portable biomedical instrumentation are: power consumption, long-term sensor stability, comfortable wearing and wireless connectivity. In this scenario, it would be valuable to realize prototypes using available technologies to assess long-term personal monitoring and foster new ways to provide healthcare services. The aim of this work is to discuss the advantages and the drawbacks in long term monitoring of biopotentials and body movements using textile electrodes embedded in clothes. The textile electrodes were embedded into garments; tiny shirt and short were used to acquire electrocardiographic and electromyographic signals. The garment was equipped with low power electronics for signal acquisition and data wireless transmission via Bluetooth. A small, battery powered, biopotential amplifier and three-axes acceleration body monitor was realized. Patient monitor incorporates a microcontroller, analog-to-digital signal conversion at programmable sampling frequencies. The system was able to acquire and to transmit real-time signals, within 10 m range, to any Bluetooth device (including PDA or cellular phone). The electronics were embedded in the shirt resulting comfortable to wear for patients. Small size MEMS 3-axes accelerometers were also integrated. © 2011 IEEE.
Resumo:
The seminal multiple view stereo benchmark evaluations from Middlebury and by Strecha et al. have played a major role in propelling the development of multi-view stereopsis methodology. Although seminal, these benchmark datasets are limited in scope with few reference scenes. Here, we try to take these works a step further by proposing a new multi-view stereo dataset, which is an order of magnitude larger in number of scenes and with a significant increase in diversity. Specifically, we propose a dataset containing 80 scenes of large variability. Each scene consists of 49 or 64 accurate camera positions and reference structured light scans, all acquired by a 6-axis industrial robot. To apply this dataset we propose an extension of the evaluation protocol from the Middlebury evaluation, reflecting the more complex geometry of some of our scenes. The proposed dataset is used to evaluate the state of the art multiview stereo algorithms of Tola et al., Campbell et al. and Furukawa et al. Hereby we demonstrate the usability of the dataset as well as gain insight into the workings and challenges of multi-view stereopsis. Through these experiments we empirically validate some of the central hypotheses of multi-view stereopsis, as well as determining and reaffirming some of the central challenges.