33 resultados para Chemo- And Multi-enzymatic Processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of critical issues for dual-polarization single- and multi-band optical orthogonal-frequency division multiplexing (DPSB/ MB-OFDM) signals are analyzed in dispersion compensation fiber (DCF)-free long-haul links. For the first time, different DP crosstalk removal techniques are compared, the maximum transmission-reach is investigated, and the impact of subcarrier number and high-level modulation formats are explored thoroughly. It is shown, for a bit-error-rate (BER) of 10-3, 2000 km of quaternary phase-shift keying (QPSK) DP-MBOFDM transmission is feasible. At high launched optical powers (LOP), maximum-likelihood decoding can extend the LOP of 40 Gb/s QPSK DPSB- OFDM at 2000 km by 1.5 dB compared to zero-forcing. For a 100 Gb/s DP-MB-OFDM system, a high number of subcarriers contribute to improved BER but at the cost of digital signal processing computational complexity, whilst by adapting the cyclic prefix length the BER can be improved for a low number of subcarriers. In addition, when 16-quadrature amplitude modulation (16QAM) is employed the digital-toanalogue/ analogue-to-digital converter (DAC/ADC) bandwidth is relaxed with a degraded BER; while the 'circular' 8QAM is slightly superior to its 'rectangular' form. Finally, the transmission of wavelength-division multiplexing DP-MB-OFDM and single-carrier DP-QPSK is experimentally compared for up to 500 Gb/s showing great potential and similar performance at 1000 km DCF-free G.652 line. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this research is to study the perceived impact of some factors on the resources allocation processes of the Nigerian universities and to suggest a framework that will help practitioners and academics to understand and improve such processes. Design/methodology/approach – The study adopted the interpretive qualitative approach aimed at an ‘in-depth’ understanding of the resource allocation experiences of key university personnel and their perceived impact of the contextual factors affecting such processes. The analysis of individual narratives from each university established the conditions and factors impacting the resources allocation processes within each institution. Findings – The resources allocation process issues in the Nigerian universities may be categorised into people (core and peripheral units’ challenge, and politics and power); process (resources allocation processes); and resources (critical financial shortage and resources dependence response). The study also provides insight that resourcing efficiency in Nigerian universities appears strongly constrained by the rivalry among the resource managers. The efficient resources allocation process (ERAP) model is proposed to resolve the identified resourcing deficiencies. Research limitations/implications – The research is not focused to provide generalizable observations but ‘in-depth’ perceived factors and their impact on the resources allocation processes in Nigerian universities. The study is limited to the internal resources allocation issues within the universities and excludes the external funding factors. The resource managers’ responses to the identified factors may affect their internal resourcing efficiency. Further research using more empirical samples is required to obtain more widespread results and the implications for all universities. Originality/value – This study contributes a fresh literature framework to resources allocation processes focusing at ‘people’, ‘process’ and ‘resources’. Also a middle range theory triangulation is developed in relation to better understanding of resourcing process management. The study will be of interest to university managers and policy makers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term oxylipin is applied to the generation of oxygenated products of polyunsaturated fatty acids that can arise either through non-enzymatic or enzymatic processes generating a complex array of products, including alcohols, aldehydes, ketones, acids and hydrocarbon gases. The biosynthetic origin of these products has revealed an array of enzymes involved in their formation and more recently a radical pathway. These include lipoxygenases and α-dioxygenase that insert both oxygen atoms in to the acyl chain to initiate the pathways, to specialised P450 monooxygenases that are responsible for their downstream processing. This latter group include enzymes at the branch points such as allene oxide synthase, leading to jasmonate signalling, hydroperoxide lyase, responsible for generating pathogen/pest defensive volatiles and divinyl ether synthases and peroxygenases involved in the formation of antimicrobial compounds. The complexity of the products generated raises significant challenges for their rapid identification and quantification using metabolic screening methods. Here the current developments in oxylipin metabolism are reviewed together with the emerging technologies required to expand this important field of research that underpins advances in plant-pest/pathogen interactions.