41 resultados para Broadband planar monopole Antennas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with long-term (20+ years) forecasting of broadband traffic in next-generation networks. Such long-term approach requires going beyond extrapolations of past traffic data while facing high uncertainty in predicting the future developments and facing the fact that, in 20 years, the current network technologies and architectures will be obsolete. Thus, "order of magnitude" upper bounds of upstream and downstream traffic are deemed to be good enough to facilitate such long-term forecasting. These bounds can be obtained by evaluating the limits of human sighting and assuming that these limits will be achieved by future services or, alternatively, by considering the contents transferred by bandwidth-demanding applications such as those using embedded interactive 3D video streaming. The traffic upper bounds are a good indication of the peak values and, subsequently, also of the future network capacity demands. Furthermore, the main drivers of traffic growth including multimedia as well as non-multimedia applications are identified. New disruptive applications and services are explored that can make good use of the large bandwidth provided by next-generation networks. The results can be used to identify monetization opportunities of future services and to map potential revenues for network operators. © 2014 The Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber to the premises has promised to increase the capacity in telecommunications access networks for well over 30 years. While it is widely recognized that optical-fiber-based access networks will be a necessity in the shortto medium-term future, its large upfront cost and regulatory issues are pushing many operators to further postpone its deployment, while installing intermediate unambitious solutions such as fiber to the cabinet. Such high investment cost of both network access and core capacity upgrade often derives from poor planning strategies that do not consider the necessity to adequately modify the network architecture to fully exploit the cost benefit that a fiber-centric solution can bring. DISCUS is a European Framework 7 Integrated Project that, building on optical-centric solutions such as long-reach passive optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. DISCUS analyzes, designs, and demonstrates end-to-end architectures and technologies capable of saving cost and energy by reducing the number of electronic terminations in the network and sharing the deployment costs among a larger number of users compared to current fiber access systems. This article describes the network architecture and the supporting technologies behind DISCUS, giving an overview of the concepts and methodologies that will be used to deliver our end-to-end network solution. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe recent architectural and technological advances of the end to end optical network architecture proposed by the DISCUS project (the DIStributed Core for unlimited bandwidth supply for all Users and Services). The two main targets of DISCUS are the principle of equivalence in the access and the reduction of optical-to-electronic conversions in the metro-core network. Technological advances and techno-economic evaluation of Long-Reach Passive Optical Networks (LR-PON), as well as the optimal metro-core node architecture and the required network control plane framework are reported. Network infrastructure sharing challenges are also discussed. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel modulator array integrating eight GaAs electro-optic IQ modulators is characterized and tested over long-reach direct-detected multi-band OFDM-PONs. The GaAs IQ modulators present > 22 GHz bandwidth with 3V Vpi, being suitable for a 100-km 40-Gb/s OOFDM-PON supporting up to 1024 users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibre-to-the-premises (FTTP) has been long sought as the ultimate solution to satisfy the demand for broadband access in the foreseeable future, and offer distance-independent data rate within access network reach. However, currently deployed FTTP networks have in most cases only replaced the transmission medium, without improving the overall architecture, resulting in deployments that are only cost efficient in densely populated areas (effectively increasing the digital divide). In addition, the large potential increase in access capacity cannot be matched by a similar increase in core capacity at competitive cost, effectively moving the bottleneck from access to core. DISCUS is a European Integrated Project that, building on optical-centric solutions such as Long-Reach Passive Optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. One of the key features of the project is the end-to-end approach, which promises to deliver a complete network design and a conclusive analysis of its economic viability. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing pressure to ensure that future broadband networks are both super fast and ubiquitously available to all users without the need for large government subsidies, this requires a radical change to network architectures. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the key aspects of an optical link which transmits a broadband microwave filter bank multicarrier (FBMC) signal. The study is presented in the context of creating an all-analogue real-time multigigabit orthogonal frequency division multiplexing electro-optical transceiver for short range and high-capacity data center networks. Passive microwave filters are used to perform the pulse shaping of the bit streams, allowing an orthogonal transmission without the necessity of digital signal processing (DSP). Accordingly, a cyclic prefix that would cause a reduction in the net data rate is not required. An experiment consisting of three orthogonally spaced 2.7 Gbaud quadrature phase shift keyed subchannels demonstrates that the spectral efficiency of traditional DSP-less subcarrier multiplexed links can be potentially doubled. A sensitivity of -29.5 dBm is achieved in a 1-km link.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale mechanical products, such as aircraft and rockets, consist of large numbers of small components, which introduce additional difficulty for assembly accuracy and error estimation. Planar surfaces as key product characteristics are usually utilised for positioning small components in the assembly process. This paper focuses on assembly accuracy analysis of small components with planar surfaces in large-scale volume products. To evaluate the accuracy of the assembly system, an error propagation model for measurement error and fixture error is proposed, based on the assumption that all errors are normally distributed. In this model, the general coordinate vector is adopted to represent the position of the components. The error transmission functions are simplified into a linear model, and the coordinates of the reference points are composed by theoretical value and random error. The installation of a Head-Up Display is taken as an example to analyse the assembly error of small components based on the propagation model. The result shows that the final coordination accuracy is mainly determined by measurement error of the planar surface in small components. To reduce the uncertainty of the plane measurement, an evaluation index of measurement strategy is presented. This index reflects the distribution of the sampling point set and can be calculated by an inertia moment matrix. Finally, a practical application is introduced for validating the evaluation index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new bidirectional pumping scheme with dual order forward pumps is proposed. Performance is compared numerically with conventional bidirectional and backward only pumping schemes for a 70 nm bandwidth, 61.5 km distributed Raman amplifier. We demonstrate that it is possible to design a flat gain spectrum with improved noise figure and OSNR, as well as a low gain ripple (<1 dB).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode-Electrolyte-Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V-I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minimization of undesirable temperature gradients in all dimensions of a planar solid oxide fuel cell (SOFC) is central to the thermal management and commercialization of this electrochemical reactor. This article explores the effective operating variables on the temperature gradient in a multilayer SOFC stack and presents a trade-off optimization. Three promising approaches are numerically tested via a model-based sensitivity analysis. The numerically efficient thermo-chemical model that had already been developed by the authors for the cell scale investigations (Tang et al. Chem. Eng. J. 2016, 290, 252-262) is integrated and extended in this work to allow further thermal studies at commercial scales. Initially, the most common approach for the minimization of stack's thermal inhomogeneity, i.e., usage of the excess air, is critically assessed. Subsequently, the adjustment of inlet gas temperatures is introduced as a complementary methodology to reduce the efficiency loss due to application of excess air. As another practical approach, regulation of the oxygen fraction in the cathode coolant stream is examined from both technical and economic viewpoints. Finally, a multiobjective optimization calculation is conducted to find an operating condition in which stack's efficiency and temperature gradient are maximum and minimum, respectively.