349 resultados para Bragg gratings
Resumo:
We report a compact two-dimensional accelerometer based upon a simple fiber cantilever constructed from a short length of multicore optical fiber. Two-axis measurement is demonstrated up to 3 kHz. Differential measurement between fiber Bragg gratings written in the multicore fiber provides temperature- insensitive measurements.
Resumo:
This thesis presents the potential sensing applications of fibre Bragg gratings in polymer optical fibres. Fibre Bragg gratings are fabricated in different kinds of polymer optical fibres, including Poly methyl methacrylate (PMMA) and TOPAS cyclic olefin copolymer based microstructured polymer optical fibres and PMMA based step-index photosensitive polymer optical fibre, using the 325nm continuous wave ultraviolet laser and phase mask technique. The thermal response of fabricated microstructured polymer optical fibre Bragg gratings has been characterized. The PMMA based single mode microstructured polymer optical fibre Bragg gratings exhibit negative non-linear Bragg wavelength shift with temperature, including a quasi-linear region. The thermal sensitivity of such Bragg gratings in the linear region is up to -97pm/°C. A permanent shift in the grating wavelength at room temperature is observed when such gratings are heated above a threshold temperature which can be extended by annealing the fibre before grating inscription. The largest positive Bragg wavelength shift with temperature in transmission is observed in TOPAS based few moded microstructured polymer optical fibre Bragg gratings and the measured temperature sensitivity is 250±0.5pm/°C. Gluing method is developed to maintain stable optical coupling between PMMA based single mode step index polymer optical fibre Bragg gratings and single mode step index silica optical fibre. Being benefit from this success, polymer optical fibre Bragg gratings are able to be characterised for their temperature, humidity and strain sensitivity, which are -48.2±1pm/°C, 38.3±0.5pm per %RH and 1.33±0.04 pm/µ??respectively. These sensitivities have been utilised to achieve several applications. The strain sensitivity of step index polymer optical fibre Bragg grating devices has been exploited in the potential application of the strain condition monitoring of heavy textiles and when being attached to textile specimens with certain type of adhesives. These polymer fibre Bragg grating devices show better strain transfer and lower structure reinforcement than silica optical fibre Bragg grating devices. The humidity sensitivity of step index polymer optical fibre Bragg grating devices is applied to detecting water in jet fuel and is proved to be able to measure water content of less than 20 ppm in Jet fuel. A simultaneous temperature and humidity sensor is also made by attaching a polymer fibre Bragg grating to a silica optical fibre Bragg grating and it shows better humidity measurement accuracy than that of electronic competitors.
Resumo:
We report here the fabrication, charaterisation and refractive index sensing of two microchanneled chirped fiber Bragg gratings (MCFBGs) with different channel sizes (~550µm and ~1000µm). The chirped grating structures were UV-inscribed in optical fibre and the microchannels were created in the middle of the CFBGs by femtosecond (fs) laser assisted chemical etching method. The creation of microchannels in the CFBG structures gives an access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In comparison with previously reported FBG based RI sensors, for which the cladding layers usually were removed, the MCFBGs represent a more ideal solution for robust devices as the microchannel will not degrade the structure strength. The two MCFBGs were spectrally charaterised for their RI and temperature responses and both gratings exhibited unique thermal and RI sensitivities, which may be utilised for implementation of bio-chemical sensors with capability to eliminate temperature crosssensitivity.
Resumo:
The frequency dependent RF power degradation in direct modulated microwave photonic systems employing uniform period fibre Bragg gratingsFBG.as reflective elements is investigated. The results have implications in terms of the available RF bandwidth and the stability requirements for the fibre Bragg gratings.
Resumo:
We demonstrate the use of tilted fiber gratings to assist with the generation of infrared surface plasmons on a metal film coating the flat of a D-shaped fiber. The wavelength of the strong (>25 dB) resonance is tunable over similar to 1000 nm by adjusting the polarization state of the light and is highly sensitive to the refractive index of any aqueous medium surrounding the fiber (sensitivity= 3365 nm).
Resumo:
We demonstrate the use of tilted fiber gratings to assist the generation of localized infrared surface plasmons with short propagation lengths and a sensitivity of d lambda/dn = 3365 nm in the aqueous index regime. It was also found that the resonances could be spectrally tuned over 1000 nm at the same spatial region with high coupling efficiency (in excess of 25 dB) by altering the polarization of the light illuminating the device.
Resumo:
A method of discriminating between temperature and strain effects in fibre sensing using a conventionally written, in-fibre Bragg grating is presented. The technique uses wavelength information from the first and second diffraction orders of the grating element to determine the wavelength dependent strain and temperature coefficients, from which independent temperature and strain measurements can be made. The authors present results that validate this matrix inversion technique and quantify the strain and temperature errors which can arise for a given uncertainty in the measurement of the reflected wavelength.
Resumo:
For the first time to the authors' knowledge, fiber Bragg gratings (FBGs) with >80° tilted structures have been fabricated and characterized. Their performance in sensing temperature, strain, and the surrounding medium's refractive index was investigated. In comparison with normal FBGs and long-period gratings (LPGs), >80° tilted FBGs exhibit significantly higher refractive-index responsivity and lower thermal cross sensitivity. When the grating sensor was used to detect changes in refractive index, a responsivity as high as 340nm/refractive-index unit near an index of 1.33 was demonstrated, which is three times higher than that of conventional LPGs.
Resumo:
Fibre Bragg grating sensors are usually expensive to interrogate, and part of this thesis describes a low cost interrogation system for a group of such devices which can be indefinitely scaled up for larger numbers of sensors without requiring an increasingly broadband light source. It incorporates inherent temperature correction and also uses fewer photodiodes than the number or sensors it interrogates, using neural networks to interpret the photodiode data. A novel sensing arrangement using an FBG grating encapsulated in a silicone polymer is presented. This sensor is capable of distinguishing between different surface profiles with ridges 0.5 to 1mm deep and 2mm pitch and either triangular, semicircular or square in profile. Early experiments using neural networks to distinguish between these profiles are also presented. The potential applications for tactile sensing systems incorporating fibre Bragg gratings and neural networks are explored.
Resumo:
A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems. © 2006 IEEE.
Resumo:
We propose a new type of fiber Bragg grating (FBG) with a V-shaped dispersion profile. We demonstrate that such V-shaped FBGs bring advantages in manipulation of optical signals compared to conventional FBGs with a constant dispersion, e.g., they can produce larger chirp for the same input pulsewidth and/or can be used as pulse shapers. Application of the proposed V-shaped FBGs for signal prechirping in fiber transmission is examined. The proposed design of the V-shaped FBG can be easily extended to embrace multichannel devices.
Resumo:
Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.