65 resultados para Antennas, Antenna Arrays, Mutual Coupling, Decoupling Networks, Adaptive Arrays
Resumo:
Improving bit error rates in optical communication systems is a difficult and important problem. The error correction must take place at high speed and be extremely accurate. We show the feasibility of using hardware implementable machine learning techniques. This may enable some error correction at the speed required.
Resumo:
Existing wireless systems are normally regulated by a fixed spectrum assignment strategy. This policy leads to an undesirable situation that some systems may only use the allocated spectrum to a limited extent while others have very serious spectrum insufficiency situation. Dynamic Spectrum Access (DSA) is emerging as a promising technology to address this issue such that the unused licensed spectrum can be opportunistically accessed by the unlicensed users. To enable DSA, the unlicensed user shall have the capability of detecting the unoccupied spectrum, controlling its spectrum access in an adaptive manner, and coexisting with other unlicensed users automatically. In this article, we propose a radio system Transmission Opportunity-based spectrum access control protocol with the aim to improve spectrum access fairness and ensure safe coexistence of multiple heterogeneous unlicensed radio systems. In the scheme, multiple radio systems will coexist and dynamically use available free spectrum without interfering with licensed users. Simulation is carried out to evaluate the performance of the proposed scheme with respect to spectrum utilisation, fairness and scalability. Comparing with the existed studies, our strategy is able to achieve higher scalability and controllability without degrading spectrum utilisation and fairness performance.
Resumo:
IEEE 802.15.4 networks (also known as ZigBee networks) has the features of low data rate and low power consumption. In this paper we propose an adaptive data transmission scheme which is based on CSMA/CA access control scheme, for applications which may have heavy traffic loads such as smart grids. In the proposed scheme, the personal area network (PAN) coordinator will adaptively broadcast a frame length threshold, which is used by the sensors to make decision whether a data frame should be transmitted directly to the target destinations, or follow a short data request frame. If the data frame is long and prone to collision, use of a short data request frame can efficiently reduce the costs of the potential collision on the energy and bandwidth. Simulation results demonstrate the effectiveness of the proposed scheme with largely improve bandwidth and power efficiency. © 2011 Springer-Verlag.
Resumo:
Quality of services (QoS) support is critical for dedicated short range communications (DSRC) vehicle networks based collaborative road safety applications. In this paper we propose an adaptive power and message rate control method for DSRC vehicle networks at road intersections. The design objective is to provide high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method an offline simulation based approach is used to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network. The identified best configurations are then used online by roadside access points (AP) according to estimated number of vehicles. Simulation results show that this adaptive method significantly outperforms a fixed control method. © 2011 Springer-Verlag.
Resumo:
Class-based service differentiation is provided in DiffServ networks. However, this differentiation will be disordered under dynamic traffic loads due to the fixed weighted scheduling. An adaptive weighted scheduling scheme is proposed in this paper to achieve fair bandwidth allocation among different service classes. In this scheme, the number of active flows and the subscribed bandwidth are estimated based on the measurement of local queue metrics, then the scheduling weights of each service class are adjusted for the per-flow fairness of excess bandwidth allocation. This adaptive scheme can be combined with any weighted scheduling algorithm. Simulation results show that, comparing with fixed weighted scheduling, it effectively improve the fairness of excess bandwidth allocation.
Resumo:
Improving bit error rates in optical communication systems is a difficult and important problem. The error correction must take place at high speed and be extremely accurate. We show the feasibility of using hardware implementable machine learning techniques. This may enable some error correction at the speed required.
Resumo:
The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.
Resumo:
Dedicated short-range communications (DSRC) are a promising vehicle communication technique for collaborative road safety applications (CSA). However, road safety applications require highly reliable and timely wireless communications, which present big challenges to DSRC based vehicle networks on effective and robust quality of services (QoS) provisioning due to the random channel access method applied in the DSRC technique. In this paper we examine the QoS control problem for CSA in the DSRC based vehicle networks and presented an overview of the research work towards the QoS control problem. After an analysis of the system application requirements and the DSRC vehicle network features, we propose a framework for cooperative and adaptive QoS control, which is believed to be a key for the success of DSRC on supporting effective collaborative road safety applications. A core design in the proposed QoS control framework is that network feedback and cross-layer design are employed to collaboratively achieve targeted QoS. A design example of cooperative and adaptive rate control scheme is implemented and evaluated, with objective of illustrating the key ideas in the framework. Simulation results demonstrate the effectiveness of proposed rate control schemes in providing highly available and reliable channel for emergency safety messages. © 2013 Wenyang Guan et al.
Resumo:
Distributed source coding (DSC) has recently been considered as an efficient approach to data compression in wireless sensor networks (WSN). Using this coding method multiple sensor nodes compress their correlated observations without inter-node communications. Therefore energy and bandwidth can be efficiently saved. In this paper, we investigate a randombinning based DSC scheme for remote source estimation in WSN and its performance of estimated signal to distortion ratio (SDR). With the introduction of a detailed power consumption model for wireless sensor communications, we quantitatively analyze the overall network energy consumption of the DSC scheme. We further propose a novel energy-aware transmission protocol for the DSC scheme, which flexibly optimizes the DSC performance in terms of either SDR or energy consumption, by adapting the source coding and transmission parameters to the network conditions. Simulations validate the energy efficiency of the proposed adaptive transmission protocol. © 2007 IEEE.
Resumo:
In-Motes Bins is an agent based real time In-Motes application developed for sensing light and temperature variations in an environment. In-Motes is a mobile agent middleware that facilitates the rapid deployment of adaptive applications in Wireless Sensor Networks (WSN's). In-Motes Bins is based on the injection of mobile agents into the WSN that can migrate or clone following specific rules and performing application specific tasks. Using In-Motes we were able to create and rapidly deploy our application on a WSN consisting of 10 MICA2 motes. Our application was tested in a wine store for a period of four months. In this paper we present the In-Motes Bins application and provide a detailed evaluation of its implementation. © 2007 IEEE.
Resumo:
This article proposes a frequency agile antenna whose operating frequency band can be switched. The design is based on a Vivaldi antenna. High-performance radio-frequency microelectromechanical system (RF-MEMS) switches are used to realize the 2.7 GHz and 3.9 GHz band switching. The low band starts from 2.33 GHz and works until 3.02 GHz and the high band ranges from 3.29 GHz up to 4.58 GHz. The average gains of the antenna at the low and high bands are 10.9 and 12.5 dBi, respectively. This high-gain frequency reconfigurable antenna could replace several narrowband antennas for reducing costs and space to support multiple communication systems, while maintaining good performance.
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.
Resumo:
In this paper we study the self-organising behaviour of smart camera networks which use market-based handover of object tracking responsibilities to achieve an efficient allocation of objects to cameras. Specifically, we compare previously known homogeneous configurations, when all cameras use the same marketing strategy, with heterogeneous configurations, when each camera makes use of its own, possibly different marketing strategy. Our first contribution is to establish that such heterogeneity of marketing strategies can lead to system wide outcomes which are Pareto superior when compared to those possible in homogeneous configurations. However, since the particular configuration required to lead to Pareto efficiency in a given scenario will not be known in advance, our second contribution is to show how online learning of marketing strategies at the individual camera level can lead to high performing heterogeneous configurations from the system point of view, extending the Pareto front when compared to the homogeneous case. Our third contribution is to show that in many cases, the dynamic behaviour resulting from online learning leads to global outcomes which extend the Pareto front even when compared to static heterogeneous configurations. Our evaluation considers results obtained from an open source simulation package as well as data from a network of real cameras. © 2013 IEEE.
Resumo:
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem. In particular very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic contro algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this short paper.
Resumo:
We explored the role of modularity as a means to improve evolvability in populations of adaptive agents. We performed two sets of artificial life experiments. In the first, the adaptive agents were neural networks controlling the behavior of simulated garbage collecting robots, where modularity referred to the networks architectural organization and evolvability to the capacity of the population to adapt to environmental changes measured by the agents performance. In the second, the agents were programs that control the changes in network's synaptic weights (learning algorithms), the modules were emerged clusters of symbols with a well defined function and evolvability was measured through the level of symbol diversity across programs. We found that the presence of modularity (either imposed by construction or as an emergent property in a favorable environment) is strongly correlated to the presence of very fit agents adapting effectively to environmental changes. In the case of learning algorithms we also observed that character diversity and modularity are also strongly correlated quantities. © 2014 Springer Science+Business Media New York.