44 resultados para Alzheimer, Enfermedad de


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of diffuse, primitive and classic beta-amyloid (A beta) deposits was studied in relation to the incidence of blood vessels in the superior frontal gyrus of nine cases of sporadic Alzheimer's disease (SAD), two cases of familial Alzheimer's disease (FAD) with amyloid precursor protein (APP) mutations (APP717, Val --> Ile), and eight cases of FAD not linked to chromosomes 21, 14 or 1. Stepwise multiple regression was used to determine for each patient whether variations in the density of A beta deposits along the cortex were significantly correlated with the incidence of blood vessels. In the majority of FAD and SAD cases, the density of the diffuse and primitive type A beta deposits was not related to blood vessels. However, the incidence of the larger diameter (> 10 microns) blood vessels was positively correlated with the density of the classic A beta deposits in eight (89%) SAD and two (20%) FAD cases. The data suggest that the densities of vessels and deposits were not significantly correlated between cases but only within cases, suggesting a strictly local effect. In addition, the spatial association between classic A beta deposits and blood vessels may be more apparent in SAD compared with FAD cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial pattern of discrete beta-amyloid (A beta) deposits was studied in the superficial laminae of cortical fields of different types and in the hippocampus in 6 cases of Alzheimer's disease (AD). In 41/42 tissues examined, discrete A beta deposits were aggregated into clusters and in 34/41 tissues (25/34 of the cortical tissues), there was evidence for a regular periodicity of the A beta deposit clusters parallel to the tissue boundary. The dimensions of the clusters varied from 400 to > 12,800 microns in different tissues. Although the A beta deposit clusters were larger than predicted, the regular periodicity suggests that they develop in relation to groups of cells associated with specific projections. This would be consistent with the hypothesis that the distribution of discrete A beta deposits in AD could reflect progressive synaptic disconnection along interconnected neuronal pathways. This implies that amyloid deposition could be a response to, rather than a cause of, synaptic disconnection in AD.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial patterns of discrete beta-amyloid (Abeta) deposits in brain tissue from patients with Alzheimer disease (AD) were studied using a statistical method based on linear regression, the results being compared with the more conventional variance/mean (V/M) method. Both methods suggested that Abeta deposits occurred in clusters (400 to <12,800 mu m in diameter) in all but 1 of the 42 tissues examined. In many tissues, a regular periodicity of the Abeta deposit clusters parallel to the tissue boundary was observed. In 23 of 42 (55%) tissues, the two methods revealed essentially the same spatial patterns of Abeta deposits; in 15 of 42 (36%), the regression method indicated the presence of clusters at a scale not revealed by the V/M method; and in 4 of 42 (9%), there was no agreement between the two methods. Perceived advantages of the regression method are that there is a greater probability of detecting clustering at multiple scales, the dimension of larger Abeta clusters can be estimated more accurately, and the spacing between the clusters may be estimated. However, both methods may be useful, with the regression method providing greater resolution and the V/M method providing greater simplicity and ease of interpretation. Estimates of the distance between regularly spaced Abeta clusters were in the range 2,200-11,800 mu m, depending on tissue and cluster size. The regular periodicity of Abeta deposit clusters in many tissues would be consistent with their development in relation to clusters of neurons that give rise to specific neuronal projections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic exposure to aluminium (Al) remains a controversial possible cause of sporadic forms of Alzheimer's disease (AD). This article reviews the evidence that once Al enters the brain and individual brain cells, it may be involved in three pathological processes: (1) the production of abnormal forms of tau leading to the formation of cellular neurofibrillary tangles and neuropil threads; (2) the processing of the amyloid precursor protein, resulting in the formation of beta-amyloid deposits and senile plaques, and (3) that via the mutual histocompatibility system, Al could be involved in the initiation of the immune response observed in AD patients. Despite recent evidence that Al could be involved in these processes, a conclusive case that exposure to Al initiates the primary pathological process in sporadic AD remains to be established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clustering pattern of diffuse, primitive and classic β-amyloid (Aβ) deposits was studied in the upper laminae of the frontal cortex of 9 patients with sporadic Alzheimer's disease (AD). Aβ stained tissue was counterstained with collagen type IV antiserum to determine whether the clusters of Aβ deposits were related to blood vessels. In all patients, Aβ deposits and blood vessels were clustered, with in many patients, a regular periodicity of clusters along the cortex parallel to the pia. The classic Aβ deposit clusters coincided with those of the larger blood vessels in all patients and with clusters of smaller blood vessels in 4 patients. Diffuse deposit clusters were related to blood vessels in 3 patients. Primitive deposit clusters were either unrelated to or negatively correlated with the blood vessels in six patients. Hence, Aβ deposit subtypes differ in their relationship to blood vessels. The data suggest a direct and specific role for the larger blood vessels in the formation of amyloid cores in AD. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of diffuse, primitive, classic and compact β-amyloid (β/A4) deposits was estimated in the medial temporal lobe in elderly non-demented brains and in Alzheimer's disease (AD). In the non-demented cases, β/A4 deposits were absent in the hippocampus but in 8/14 cases they were present in the adjacent cortical regions. Variation in β/A4 deposition in the non-demented cases was large and overlapped with that of the AD cases. The ratio of mature to diffuse β/A4 deposits was greater in the non-demented than in the AD cases. In both the non-demented cases and AD, the β/A4 deposits were clustered with, in many tissues, a regular distribution of clusters along the cortex parallel to the pia. However, the mean cluster size of the deposits in the cortex was greater in AD than in the non-demented cases. These results suggest that the spread of β/A4 pathology between the modular units of the cortex and into the hippocampus could be important factors in the development of AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hypothesis that a metal-induced immune disorder may be involved in the pathogenesis of some forms of Alzheimer's disease (AD) is presented. The classical complement pathway is activated in AD and T cells and reactive microglia appear in the brain. Studies of metal induced autoimmunity and the use of compounds containing aluminium as vaccine adjuvants suggest that metals can activate complement and can be taken up by antigen presenting cells. The consequent immune response could contribute to neuronal damage, beta-amyloid deposition and cell death. The strengths and weaknesses of this hypothesis are discussed and tests of some aspects are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of senile plaques (SP) and neurofibrillary tangles (NFT) was estimated at post-mortem in areas B17 and B18 of the visual cortex in 18 Alzheimer’s disease (AD) cases which varied in disease onset and duration. The density of SP in B17 and NFT in B17 and B18 declined significantly with age at death of the patient. The density of SP and NFT was greater in B18 than B17 but only in cases of earlier onset and shorter duration. The pathological differences between B17 and B18 could explain the visual evoked responses (VER) that have been reported in AD. However, the differences were small, and changes in the afferent pathways remain the most likely explanation for the VER in AD. © 1994 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-amyloid (Aβ) deposition in the medial temporal lobe (MTL) was studied in elderly non-demented (ND) cases and in patients with Alzheimer's disease (AD). In AD, Aβ deposits were present throughout the MTL although density was less in the hippocampus than the adjacent cortical regions. In the ND cases, no Aβ deposits were recorded in 6 cases and in the remaining 8 cases, Aβ deposits were confined to the cortical regions adjacent to the hippocampus. The mean density of Aβ deposits in the cortical regions examined was greater in AD than in the ND cases but there was a significant overlap between the two groups. The ratio of mature to diffuse Aβ deposits was greater in the ND than the AD cases. In both patient groups, Aβ deposits formed clusters in the cortex and many tissues exhibited a regular distribution of clusters along the cortex parallel to the pia. The mean dimension of the Aβ clusters was greater in AD than in the ND cases. Hence, few aspects of Aβ deposition appeared to consistently separate AD from ND cases. However, the spread of Aβ pathology between modular units of the cortex and into regions of the hippocampus could be factors in the development of AD. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of diffuse, primitive, classic and compact β-amyloid ( β A4) deposits was estimated in the hippocampus and adjacent gyri in human patients with Down's syndrome (DS) and sporadic Alzheimer's disease (AD). The objective of the study was to determine whether there were differences in β A4 deposition in DS and sporadic AD and whether these differences could be attributed to overexpression of the amyloid precursor gene (APP) in DS. Total β A4 deposit density was greater in DS than AD in all brain regions studied but the DS/AD density ratios varied between brain regions. In the majority of brain regions, the ratio of primitive to diffuse β A4 deposits was greater in DS but the ratio of classic to diffuse deposits was greater in AD. The data were consistent with the hypothesis that overexpression of the APP gene in DS may lead to increased β A4 deposition. However, local brain factors also appear to be important in β A4 deposition in DS. Overexpression of the APP gene may also be responsible for increased production of paired helical filaments (PHF) and result in enhanced formation of primitive β A4 deposits in DS. In addition, increased formation of classic deposits in AD suggests that factors necessary for the production of a compact amyloid core are enhanced in AD compared with DS. © 1994.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial pattern of cellular neurofibrillary tangles (NFT) was studied in the supra- and infragranular layers of various cortical regions in cases of Alzheimer's disease (AD). The objective was to test the hypothesis that NFT formation was associated with the cells of origin of specific cortico-cortical projections. The novel feature of the study was that pattern analysis enabled the dimension and spacing of NFT clusters along the cortical ribbon to be estimated. In the majority of brain regions studied, NFT occurred in clusters of neurons which were regularly spaced along the cortical strip. This pattern is consistent with the predicted distribution of the cells of origin of specific cortico-cortico projections. Mean NFT cluster size varied from 250 to > 12800 microns in different cortical tissues suggesting either variation in the size of the cell clusters or a dynamic process in the development of NFT in relation to these cell clusters. The formation of NFT in cell clusters which may give rise to the feed-forward and feed-back cortico-cortical projections suggests a possible route of spread of NFT pathology in AD between cortical regions and from the cortex to subcortical areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of diffuse, primitive, classic and compact beta/A4 deposits was estimated in the cortex and hippocampus in Alzheimer's disease (AD) cases with and without pronounced congophilic angiopathy (CA). The total density of beta/A4 deposits in a given brain region was similar in cases with and without CA. Significantly fewer diffuse deposits and more primitive/classic deposits were found in the cases with CA. The densities of the primitive, classic and compact deposits were positively correlated in the cases without CA. However, no correlations were observed between the density of the mature subtypes and the diffuse deposits in these cases. In the cases with CA, the density of the primitive deposits was positively correlated with the diffuse but not with the classic deposits. The data suggest that the mature beta/A4 deposits are derived from the diffuse deposits and that the presence of pronounced CA enhances their formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density and spatial pattern of immunostained beta/A4 deposits and mature senile plaques (SP) stained by the Glees method were compared in Alzheimer's diseased brain. Thirty-seven percent of the variance in Glees SP density in a tissue could be explained by beta/A4. Both lesions were clustered with the beta/A4 clusters often larger than the Glees SP clusters. Beta/A4 and Glees SP cluster size were not correlated in a tissue. The size of Glees SP clusters was positively correlated with SP density but no correlation could be detected for beta/A4. Hence, the density and spatial pattern of beta/A4 deposits in most tissues did not predict the development of Glees SP.