35 resultados para Adjuvanted Influenza Vaccines
Improving T cell-induced response to subunit vaccines:opportunities for a proteomic systems approach
Resumo:
Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. With new and re-emerging infections posing increasing risks to food stocks and the health of the population in general, there is a need to improve the rationale of vaccine development. One key challenge lies in development of an effective T cell-induced response to subunit vaccines at specific sites and in different populations. Objectives: In this review, we consider how a proteomic systems-based approach can be used to identify putative novel vaccine targets, may be adopted to characterise subunit vaccines and adjuvants fully. Key findings: Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, little work has been reported on identifying MHC 1-binding peptides for subunit vaccines generating T cell responses in the literature to date. Summary: In combination with predictive and structural biology approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped addition to the armoury of vaccine discovery to predict T-cell subset responses and improve vaccine design strategies.
Resumo:
Liposomes not only offer the ability to enhance drug delivery, but can effectively act as vaccine delivery systems and adjuvants. Their flexibility in size, charge, bilayer rigidity and composition allow for targeted antigen delivery via a range of administration routes. In the development of liposomal adjuvants, the type of immune response promoted has been linked to their physico-chemical characteristics, with the size and charge of the liposomal particles impacting on liposome biodistribution, exposure in the lymph nodes and recruitment of the innate immune system. The addition of immunostimulatory agents can further potentiate their immunogenic properties. Here, we outline the attributes that should be considered in the design and manufacture of liposomal adjuvants for the delivery of sub-unit and nucleic acid based vaccines.
Resumo:
Vaccines continue to offer the key line of protection against a range of infectious diseases; however, the range of vaccines currently available is limited. One key consideration in the development of a vaccine is risk-versus-benefit, and in an environment of perceived low risk, the benefit of vaccination may not be recognised. To address this, there has been a move towards the use of subunit-based vaccines, which offer low side-effect profiles but are generally weakly immunogenic. This can be compensated for by the development of effective adjuvants. Nanotechnology offers key attributes in this field through the ability of nanoparticulates to incorporate and protect antigens from rapid degradation, combined with their potential to effectively deliver the antigens to appropriate cells within the immune system. These characteristics can be exploited in the development of new adjuvants. This chapter will outline the applications of nanosystems in vaccine formulations and consider the mechanisms of action behind a range of formulations.