32 resultados para Active and reactive power control
Resumo:
The unmitigated transmission of undesirable vibration can result in problems by way of causing human discomfort, machinery and equipment failure, and affecting the quality of a manufacturing process. When identifiable transmission paths are discernible, vibrations from the source can be isolated from the rest of the system and this prevents or minimises the problems. The approach proposed here for vibration isolation is active force cancellation at points close to the vibration source. It uses force feedback for multiple-input and multiple-output control at the mounting locations. This is particularly attractive for rigid mounting of machine on relative flexible base where machine alignment and motions are to be restricted. The force transfer function matrix is used as a disturbance rejection performance specification for the design of MIMO controllers. For machine soft-mounted via flexible isolators, a model for this matrix has been derived. Under certain conditions, a simple multiplicative uncertainty model is obtained that shows the amount of perturbation a flexible base has on the machine-isolator-rigid base transmissibility matrix. Such a model is very suitable for use with robust control design paradigm. A different model is derived for the machine on hard-mounts without the flexible isolators. With this model, the level of force transmitted from a machine to a final mounting structure using the measurements for the machine running on another mounting structure can be determined. The two mounting structures have dissimilar dynamic characteristics. Experiments have verified the usefulness of the expression. The model compares well with other methods in the literature. The disadvantage lies with the large amount of data that has to be collected. Active force cancellation is demonstrated on an experimental rig using an AC industrial motor hard-mounted onto a relative flexible structure. The force transfer function matrix, determined from measurements, is used to design H and Static Output Feedback controllers. Both types of controllers are stable and robust to modelling errors within the identified frequency range. They reduce the RMS of transmitted force by between 30?80% at all mounting locations for machine running at 1340 rpm. At the rated speed of 1440 rpm only the static gain controller is able to provide 30?55% reduction at all locations. The H controllers on the other hand could only give a small reduction at one mount location. This is due in part to the deficient of the model used in the design. Higher frequency dynamics has been ignored in the model. This can be resolved by the use of a higher order model that can result in a high order controller. A low order static gain controller, with some tuning, performs better. But it lacks the analytical framework for analysis and design.
Resumo:
This paper investigates the impact that electric vehicle uptake will have on the national electricity demand of Great Britain. Data from the National Travel Survey, and the Coventry and Birmingham Low Emissions Demonstration (CABLED) are used to model an electrical demand profile in a future scenario of significant electric vehicle market penetration. These two methods allow comparison of how conventional cars are currently used, and the resulting electrical demand with simple substitution of energy source, with data showing how electric vehicles are actually being used at present. The report finds that electric vehicles are unlikely to significantly impact electricity demand in GB. The paper also aims to determine whether electric vehicles have the potential to provide ancillary services to the grid operator, and if so, the capacity for such services that would be available. Demand side management, frequency response and Short term Operating Reserve (STOR) are the services considered. The report finds that electric cars are unlikely to provide enough moveable demand peak shedding to be worthwhile. However, it is found that controlling vehicle charging would provide sufficient power control to viably act as frequency response for dispatch by the transmission system operator. This paper concludes that electric vehicles have technical potential to aid management of the transmission network without adding a significant demand burden. © 2013 IEEE.