38 resultados para ANGLE-RESOLVED PHOTOEMISSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We proposed and demonstrated pulsed fiber lasers Q-switched and mode-locked by using a large-angle tilted fiber grating, for the first time to our best knowledge. Owing to the unique polarization properties of the large-angle tilted fiber grating (LA-TFG), i.e. polarization-dependent loss and polarization-mode splitting, switchable dual-wavelength Q-switched and mode-locked pulses have been achieved with short and long cavities, respectively. For the mode-locking case, the laser was under the operation of nanosecond rectangular pulses, due to the peak-power clamping effect. With the increasing pump power, the durations of both single-and dual-wavelength rectangular pulses increase. It was also found that each filtered wavelength of the dual-wavelength rectangular pulse corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the use of different direct detection modulation formats in a wavelength switched optical network. We find the minimum time it takes a tunable sampled grating distributed Bragg reflector laser to recover after switching from one wavelength channel to another for different modulation formats. The recovery time is investigated utilizing a field programmable gate array which operates as a time resolved bit error rate detector. The detector offers 93 ps resolution operating at 10.7 Gb/s and allows for all the data received to contribute to the measurement, allowing low bit error rates to be measured at high speed. The recovery times for 10.7 Gb/s non-return-to-zero on–off keyed modulation, 10.7 Gb/s differentially phase shift keyed signal and 21.4 Gb/s differentially quadrature phase shift keyed formats can be as low as 4 ns, 7 ns and 40 ns, respectively. The time resolved phase noise associated with laser settling is simultaneously measured for 21.4 Gb/s differentially quadrature phase shift keyed data and it shows that the phase noise coupled with frequency error is the primary limitation on transmitting immediately after a laser switching event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows how the angular uncertainties can be determined for a rotary-laser automatic theodolite of the type used in (indoor-GPS) iGPS networks. Initially, the fundamental physics of the rotating head device is used to propagate uncertainties using Monte Carlo simulation. This theoretical element of the study shows how the angular uncertainty is affected by internal parameters, the actual values of which are estimated. Experiments are then carried out to determine the actual uncertainty in the azimuth angle. Results are presented that show that uncertainty decreases with sampling duration. Other significant findings are that uncertainty is relatively constant throughout the working volume and that the uncertainty value is not dependent on the size of the reference angle. © 2009 IMechE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building an interest model is the key to realize personalized text recommendation. Previous interest models neglect the fact that a user may have multiple angles of interests. Different angles of interest provide different requests and criteria for text recommendation. This paper proposes an interest model that consists of two kinds of angles: persistence and pattern, which can be combined to form complex angles. The model uses a new method to represent the long-term interest and the short-term interest, and distinguishes the interest on object and the interest on the link structure of objects. Experiments with news-scale text data show that the interest on object and the interest on link structure have real requirements, and it is effective to recommend texts according to the angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the generation of orthogonally polarized bright–dark pulse pair in a passively mode-locked fiber laser with a large-angle tilted fiber grating (LA-TFG). The unique polarization properties of the LA-TFG, i.e., polarization-dependent loss and polarization-mode splitting, enable dual-wavelength mode-locking operation. Besides dual-wavelength bright pulses with uniform polarization at two different wavelengths, the bright–dark pulse pair has also been achieved. It is found that the bright–dark pulse pair is formed due to the nonlinear couplings between lights with two orthogonal polarizations and two different wavelengths. Furthermore, harmonic mode-locking of bright–dark pulse pair has been observed. The obtained bright–dark pulse pair could find potential use in secure communication system. It also paves the way to manipulate the generation of dark pulse in terms of wavelength and polarization, using specially designed fiber grating for mode-locking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform < THF < methanol) rather than the solubility order (where THF > chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The exact nature of the relationship between Alzheimer’s disease (AD) and primary open angle glaucoma (POAG) is still the subject of debate. One factor attributed to the aetiology of both conditions is vascular dysfunction. This study aimed to investigate the similarities and differences in retinal microvascular function between mild AD patients, early stage POAG patients and healthy controls Methods: Retinal vessel reactivity to flickering light was assessed in 10 AD, 19 POAG and 22 healthy age matched control patients by means of dynamic retinal vessel analysis (DVA, IMEDOS, GmbH, Jena, Germany) according to an established protocol. All patients additionally underwent BP measurements and blood analysis for glucose and lipid metabolism markers Results: AD and POAG patients demonstrated comparable alterations in retinal artery reactivity, in the form of an increased arterial reaction time (RT) to flicker light on the final flicker cycle (p=0.014), which was not replicated in the healthy age and cardiovascular risk matched controls (p>0.05). Furthermore, the sequential changes in RT on progressing from flicker one to flicker three were found to differ between healthy controls and the two disease groups (p=0.001) Conclusions: AD and POAG patients demonstrate comparable signs of vascular dysfunction in their retinal arteries at the early stages of their disease process. These comparable signs may reflect similarities in the pathophysiological processes that occur in the development of both conditions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of ∼207.38nm/RIU, ∼241.79nm/RIU at RI range 1.344-1.374 and ∼113.09nm/RIU, ∼144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of ∼ 65.728dBm/RIU and ∼ 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor.