51 resultados para ADIPOSE-TISSUE ADAPTABILITY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the mechanism of the lipid depletion by zinc-a(2)-glycoprotein (ZAG). DESIGN: Studies were conducted in the ob/ob mouse, or on isolated adipocytes from these animals or their lean counterparts. RESULTS: Treatment of these animals for 15 days with ZAG (100? µg, intravenously, daily) resulted in a reduction of body weight of 6.55? g compared with phosphate-buffered saline-treated controls, without a change in food or water intake, but with a 0.4?°C rise in rectal temperature. ZAG-treated mice had a 30% reduction in carcass fat mass and a twofold increase in weight of brown adipose tissue. Epididymal adipocytes from ZAG-treated mice showed an increased expression of ZAG and hormone-sensitive lipase (HSL), and this was maintained for a further 3 days in the absence of ZAG. There was an increased lipolytic response to isoproterenol, which was retained for 3 days in vitro in the absence of ZAG. Expression of HSL was also increased in subcutaneous and visceral adipose tissue, as was also adipose triglyceride lipase (ATGL). There was a rapid loss of labelled lipid from epididymal adipose tissue of ZAG-treated mice, but not from the other depots, reflecting the difference in sensitivity to lipolytic stimuli. The increased expression of HSL and ATGL may involve the extracellular signal-regulated kinase (ERK) pathway, as the active (phospho) form was upregulated in all adipose depots after ZAG administration, whereas in vitro studies showed induction of HSL and ATGL by ZAG to be attenuated by PD98059, an inhibitor of the ERK pathway. CONCLUSION: These results suggest that ZAG not only induces direct lipolysis, but also sensitizes adipose tissue to other lipolytic stimuli.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the anti-obesity effect of the adipokine zinc-a(2)-glycoprotein (ZAG) in rats and the mechanism of this effect. SUBJECTS: Mature male Wistar rats (540 ± 83 g) were administered human recombinant ZAG (50 µg per 100 g body weight given intravenously daily) for 10 days, while control animals received an equal volume of phosphate-buffered saline (PBS). RESULTS: Animals treated with ZAG showed a progressive decrease in body weight, without a decrease in food and water intake, but with a 0.4 °C rise in body temperature. Body composition analysis showed loss of adipose tissue, but an increase in lean body mass. The loss of fat was due to an increase in lipolysis as shown by a 50% elevation of plasma glycerol, accompanied by increased utilization of non-esterified fatty acids, as evidenced by the 55% decrease in plasma levels. Plasma levels of glucose and triglycerides were also reduced by 36-37% and there was increased expression of the glucose transporter 4 in both skeletal muscle and adipose tissue. Expression of the lipolytic enzymes adipose triglyceride lipase and hormone-sensitive lipase in the white adipose tissue (WAT) were increased twofold after ZAG administration. There was almost a twofold increased expression of uncoupling proteins 1 and 3 in brown adipose tissue and WAT, which would contribute to increased substrate utilization. Administration of ZAG increased ZAG expression twofold in the gastrocnemius muscle, BAT and WAT, which was probably necessary for its biological effect. CONCLUSION: These results show that ZAG produces increased lipid mobilization and utilization in the rat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: The goal of the current study is to determine whether the ß-adrenoreceptor (ß-AR) plays a role in the anti-obesity and anti-diabetic effects of zinc-a2-glycoprotein (ZAG). Material and methods: This has been investigated in CHO-K1 cells transfected with the human ß1-, ß2-, ß3-AR and in ob/ob mice. Cyclic AMP assays were carried out along with binding studies. Ob/ob mice were treated with ZAG and glucose transportation and insulin were examined in the presence or absence of propranolol. Results: ZAG bound to the ß3-AR with higher affinity (Kd 46±1nM) than the ß2-AR (Kd 71±3nM) while there was no binding to the ß1-AR, and this correlated with the increases in cyclic AMP in CHO-K1 cells transfected with the various ß-AR and treated with ZAG. Treatment of ob/ob mice with ZAG increased protein expression of ß3-AR in gastrocnemius muscle, and in white and brown adipose tissues, but had no effect on expression of ß1- and ß2-AR. A reduction of body weight was seen and urinary glucose excretion, increase in body temperature, reduction in maximal plasma glucose and insulin levels in the oral glucose tolerance test, and stimulation of glucose transport into skeletal muscle and adipose tissue, were completely attenuated by the non-specific ß-AR antagonist propranolol. Conclusion: The results suggest that the effects of ZAG on body weight and insulin sensitivity in ob/ob mice are manifested through a ß-3AR, or possibly a ß2-AR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adipose tissue is now well established as an endocrine organ and multiple hormones termed ‘adipokines’ are released from it. With the rapidly increasing obese population and the increased risk mortality from prostate cancer within the obese population we looked to investigate the role of the adipokine visfatin in LNCaP and PC3 prostate cancer cell lines. Using immunohistochemistry and immunocytochemistry we demonstrate visfatin expression in LNCaP (androgen-sensitive) and PC3 (androgen-insensitive) human prostate cancer cell lines as well as human prostate cancer tissue. Additionally, we show that visfatin increases PC3 cell proliferation and demonstrate the activation of the MAPKs ERK-1/2 and p38. Moreover we also demonstrate that visfatin promotes the expression and activity of MMP-2/9 which are important proteases involved in the breakdown of the extracellular matrix, suggesting a possible role for visfatin in prostate cancer metastases. These data suggest a contributory and multifunctional role for visfatin in prostate cancer progression, with particular relevance and emphasis in an obese population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc-a2-glycoprotein (ZAG) is an adipokine with the potential as a therapeutic agent in the treatment of obesity and type 2 diabetes. In this study we show that human ZAG, which is a 41-kDa protein, when administered to ob/ob mice at 50 µg/d-1 orally in the drinking water produced a progressive loss of body weight (5 g after 8 d treatment), together with a 0.5 C increase in rectal temperature and a 40% reduction in urinary excretion of glucose. There was also a 33% reduction in the area under the curve during an oral glucose tolerance test and an increased sensitivity to insulin. These results were similar to those after iv administration of ZAG. However, tryptic digestion was shown to inactivate ZAG. There was no evidence of human ZAG in the serum but a 2-fold elevation of murine ZAG, which was also observed in target tissues such as white adipose tissue. To determine whether the effect was due to interaction of the human ZAG with the ß-adrenergic (ß-AR) in the gastrointestinal tract before digestion, ZAG was coadministered to ob/ob mice together with propanolol (40 mg/kg-1), a nonspecific ß-AR antagonist. The effect of ZAG on body weight, rectal temperature, urinary glucose excretion, improvement in glucose disposal, and increased insulin sensitivity were attenuated by propanolol, as was the increase in murine ZAG in the serum. These results suggest that oral administration of ZAG increases serum levels through interaction with a ß-AR in the upper gastrointestinal tract, and gene expression studies showed this to be in the esophagus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Beta-cell failure coupled with insulin resistance is a key factor in the development of type 2 diabetes. Changes in circulating levels of adipokines, factors released from adipose tissue, form a significant link between excessive adiposity in obesity and both aforementioned factors. In this review we consider the published evidence for the role of individual adipokines on the function, proliferation, death and failure of beta-cells, focusing on those reported to have the most significant effects (leptin, adiponectin, TNFa, resistin, visfatin, DPP-IV and apelin). It is apparent that some adipokines have beneficial effects whereas others have detrimental properties; the overall contribution to beta-cell failure of changed concentrations of adipokines in the blood of obese pre-diabetic subjects will be highly dependent on the balance between these effects and the interactions between the adipokines which act on the beta-cell via a number of intersecting intracellular signalling pathways. We emphasise the importance, and comparative dearth, of studies into the combined effects of adipokines on beta-cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Obesity, and especially visceral adiposity, escalates the development of insulin resistance and type 2 diabetes. Excess adipose tissue contributes to a chronic increase in circulating fatty acids reducing the usage of glucose as a source of cellular energy. Excess fatty acids also result in increased deposition of fat in muscle and liver, and increased metabolites such as diacylglycerol and ceramide which activate isoforms of protein kinase C that impede cellular insulin signalling. Chronically raised lipid levels also impair islet beta cell function, acting in conjuction with insulin resistance to aggravate hyperglycaemia. The detrimental effects of several adipokines such as TNF, IL6 and RBP4, which are produced in excess by an increased adipose mass, and reduced production of adiponectin are further mechanisms through which obesity potentiates the development of type 2 diabetes. © 2011 The Author(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ageing process is strongly influenced by nutrient balance, such that modest calorie restriction (CR) extends lifespan in mammals. Irisin, a newly described hormone released from skeletal muscles after exercise, may induce CR-like effects by increasing adipose tissue energy expenditure. Using telomere length as a marker of ageing, this study investigates associations between body composition, plasma irisin levels and peripheral blood mononuclear cell telomere length in healthy, non-obese individuals. Segmental body composition (by bioimpedance), telomere length and plasma irisin levels were assessed in 81 healthy individuals (age 43∈±∈15.8 years, BMI 24.3∈±∈2.9 kg/m2). Data showed significant correlations between log-transformed relative telomere length and the following: age (p∈<∈0.001), height (p∈=∈0.045), total body fat percentage (p∈=∈0.031), abdominal fat percentage (p∈=∈0.038) , visceral fat level (p∈<∈0.001), plasma leptin (p∈=∈0.029) and plasma irisin (p∈=∈0.011), respectively. Multiple regression analysis using backward elimination revealed that relative telomere length can be predicted by age (b∈=∈-0.00735, p∈=∈0.001) and plasma irisin levels (b∈=∈0.04527, p∈=∈0.021). These data support the view that irisin may have a role in the modulation of both energy balance and the ageing process. © 2014 The Author(s).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Loss of adipose tissue in cancer cachexia has been associated with tumour production of a lipid-mobilizing factor (LMF) which has been shown to be homologous with the plasma protein zinc-a2-glycoprotein (ZAG). The aim of this study was to compare the ability of human ZAG with LMF to stimulate lipolysis in vitro and induce loss of body fat in vivo, and to determine the mechanisms involved. ZAG was purified from human plasma using a combination of Q Sepharose and Superdex 75 chromatography, and was shown to stimulate glycerol release from isolated murine epididymal adipocytes in a dose-dependent manner. The effect was enhanced by the cyclic AMP phosphodiesterase inhibitor Ro20-1724, and attenuated by freeze/thawing and the specific ß3-adrenoreceptor antagonist SR59230A. In vivo ZAG caused highly significant, time-dependent, decreases in body weight without a reduction in food and water intake. Body composition analysis showed that loss of body weight could be attributed entirely to the loss of body fat. Loss of adipose tissue may have been due to the lipolytic effect of ZAG coupled with an increase in energy expenditure, since there was a dose-dependent increase in expression of uncoupling protein-1 (UCP-1) in brown adipose tissue. These results suggest that ZAG may be effective in the treatment of obesity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Causative factors: Nutritional supplementation or pharmacological manipulation of appetite are unable to control the muscle atrophy seen in cancer cachexia. This suggests that tumour and/or host factors might be responsible for the depression in protein synthesis and the increase in protein degradation. An increased expression of the ubiquitin-proteasome proteolytic pathway is responsible for the increased degradation of myofibrillar proteins in skeletal muscle, and this may be due to tumour factors, such as proteolysis-inducing factor (PIF), or host factors such as tumour necrosis factor-α (TNF-α). In humans loss of adipose tissue is due to an increase in lipolysis rather than a decrease in synthesis, and this may be due to tumour factors such as lipid-mobilising factor (LMF) or TNF-α, both of which can increase cyclic AMP in adipocytes, leading to activation of hormone-sensitive lipase (HSL). Levels of mRNA for HSL are elevated twofold in adipose tissue of cancer patients, while there are no changes in lipoprotein lipase (LPL), involved in extraction of fatty acids from plasma lipoproteins for storage. Treatment for cachexia: This has concentrated on increasing food intake, although that alone is unable to reverse the metabolic changes. Agents interfering with TNF-α have not been very successful to date, although more research is required in that area. The only agent tested clinically that is able to interfere with the action of PIF is eicosapentaenoic acid (EPA). EPA attenuates protein degradation in skeletal muscle by preventing the increased expression of the ubiquitin-proteasome pathway, but has no effect on protein synthesis. When used alone EPA prevents further wasting in cachectic patients, and, when it is combined with an energy- and protein-dense nutritional supplement, weight gain is seen, which is totally lean body mass. These results suggest that mechanistic studies into the causes of cancer cachexia will allow appropriate therapeutic intervention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zinc-α2-glycoprotein (ZAG), a 43-kDa protein, is overexpressed in certain human malignant tumors and acts as a lipid-mobilizing factor to stimulate lipolysis in adipocytes leading to cachexia in mice implanted with ZAG-producing tumors. Because white adipose tissue (WAT) is an endocrine organ secreting a wide range of protein factors, including those involved in lipid metabolism, we have investigated whether ZAG is produced locally by adipocytes. ZAG mRNA was detected by RT-PCR in the mouse WAT depots examined (epididymal, perirenal, s.c., and mammary gland) and in interscapular brown fat. In WAT, ZAG gene expression was evident in mature adipocytes and in stromal-vascular cells. Using a ZAG Ab, ZAG protein was located in WAT by Western blotting and immunohistochemistry. Mice bearing the MAC16-tumor displayed substantial losses of body weight and fat mass, which was accompanied by major increases in ZAG mRNA and protein levels in WAT and brown fat. ZAG mRNA was detected in 3T3-L1 cells, before and after the induction of differentiation, with the level increasing progressively after differentiation with a peak at days 8-10. Both dexamethasone and a β 3 agonist, BRL 37344, increased ZAG mRNA levels in 3T3-L1 adipocytes. ZAG gene expression and protein were also detected in human adipose tissue (visceral and s.c.). It is suggested that ZAG is a new adipose tissue protein factor, which may be involved in the modulation of lipolysis in adipocytes. Overexpression in WAT of tumor-bearing mice suggests a local role for adipocyte-derived ZAG in the substantial reduction of adiposity of cancer cachexia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treatment of ex-breeder male NMRI mice with lipid mobilising factor isolated from the urine of cachectic cancer patients, caused a significant increase in glucose oxidation to CO2, compared with control mice receiving phosphate buffered saline. Glucose utilisation by various tissues was determined by the 2-deoxyglucose tracer technique and shown to be elevated in brain, heart, brown adipose tissue and gastrocnemius muscle. The tissue glucose metabolic rate was increased almost three-fold in brain, accounting for the ability of lipid mobilising factor to decrease blood glucose levels. Lipid mobilising factor also increased overall lipid oxidation, as determined by the production of 14CO2 from [14C carboxy] triolein, being 67% greater than phosphate buffered saline controls over a 24 h period. There was a significant increase in [14C] lipid accumulation in plasma, liver and white and brown adipose tissue after administration of lipid mobilising factor. These results suggest that changes in carbohydrate metabolism and loss of adipose tissue, together with an increased whole body fatty acid oxidation in cachectic cancer patients, may arise from tumour production of lipid mobilising factor. © 2002 Cancer Research UK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The abnormalities of lipid metabolism observed in cancer cachexia may be induced by a lipid-mobilizing factor produced by adenocarcinomas. The specific molecules and metabolic pathways that mediate the actions of lipid-mobilizing factor are not known. The mitochondrial uncoupling proteins-1, -2 and -3 are suggested to play essential roles in energy dissipation and disposal of excess lipid. Here, we studied the effects of lipid-mobilizing factor on the expression of uncoupling proteins-1, -2 and -3 in normal mice. Lipid-mobilizing factor isolated from the urine of cancer patients was injected intravenously into mice over a 52-h period, while vehicle was similarly given to controls. Lipid-mobilizing factor caused significant reductions in body weight (-10%, P=0.03) and fat mass (-20%, P<0.01) accompanied by a marked decrease in plasma leptin (-59%, P<0.01) and heavy lipid deposition in the liver. In brown adipose tissue, uncoupling protein-1 mRNA levels were elevated in lipid-mobilizing factor-treated mice (+96%, P<0.01), as were uncoupling proteins-2 and -3 (+57% and +37%, both P<0.05). Lipid-mobilizing factor increased uncoupling protein-2 mRNA in both skeletal muscle (+146%, P<0.05) and liver (+142%, P=0.03). The protein levels of uncoupling protein-1 in brown adipose tissue and uncoupling protein-2 in liver were also increased with lipid-mobilizing factor administration (+49% and +67%, both P=0.02). Upregulation by lipid-mobilizing factor of uncoupling proteins-1, -2 and -3 in brown adipose tissue, and of uncoupling protein-2 in skeletal muscle and liver, suggests that these uncoupling proteins may serve to utilize excess lipid mobilized during fat catabolism in cancer cachexia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Methods: Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). Results: PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P <0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P <0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P <0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. Conclusions: These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adipokine resistin is known to induce insulin resistance in rodent tissues. Increases in adipose tissue mass are known to have a negative effect on pancreatic beta-cell function, although the mechanisms are poorly understood. This study investigated the effects of resistin on insulin secretion, insulin receptor expression and cell viability in pancreatic beta-cells. BTC-6 or BRIN-BD11 cells were treated for 24h with resistin, and insulin receptor expression, insulin secretion and cell viability were measured. Incubation with 40ng/ml resistin caused significant decreases in insulin receptor mRNA and protein expression, but did not affect insulin secretion. At low concentrations, resistin caused significant increases in cell viability. These data implicate resistin as a factor that may regulate beta-cell function/viability, and suggests a potential mechanism by which increased adiposity causes beta-cell dysfunction.