47 resultados para  Intervertebral Disk - pathology 


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significance: Oxidized phospholipids are now well-recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and is responsible for the expansion of oxidative lipidomics. Recent Advances: Studies of oxidized phospholipids in biological samples, both from animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods have enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy and cystic fibrosis, and offer potential for developing biomarkers of molecular aspects of the diseases. Critical Issues and Future Directions: The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders can be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) are present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits are distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there is significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varies significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we report on a high-power operation of an optically pumped quantum-dot semiconductor disk laser designed for emission at 1180 nm. As a consequence of the optimization of the operation conditions, a record-high continuous-wave output power exceeding 7 W is obtained for this wavelength at a heat-sink temperature of 2 °C. A wavelength tuning over a range of 37 nm is achieved using a birefringent filter inside the cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements. © 2013 Paolo Bifulco et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A proportion of patients with motor neuron disease (MND) exhibit frontotemporal dementia (FTD) and some patients with FTD develop the clinical features of MND. Frontotemporal lobar degeneration (FTLD) is the pathological substrate of FTD and some forms of this disease (referred to as FTLD-U) share with MND the common feature of ubiquitin-immunoreactive, tau-negative cellular inclusions in the cerebral cortex and hippocampus. Recently, the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) has been found to be a major protein of the inclusions of FTLD-U with or without MND and these cases are referred to as FTLD with TDP-43 proteinopathy (FTLD-TDP). To clarify the relationship between MND and FTLD-TDP, TDP-43 pathology was studied in nine cases of FTLD-MND and compared with cases of familial and sporadic FTLD-TDP without associated MND. A principal components analysis (PCA) of the nine FTLD-MND cases suggested that variations in the density of surviving neurons in the frontal cortex and neuronal cytoplasmic inclusions (NCI) in the dentate gyrus (DG) were the major histological differences between cases. The density of surviving neurons in FTLD-MND was significantly less than in FTLD-TDP cases without MND, and there were greater densities of NCI but fewer neuronal intranuclear inclusions (NII) in some brain regions in FTLD-MND. A PCA of all FTLD-TDP cases, based on TDP-43 pathology alone, suggested that neuropathological heterogeneity was essentially continuously distributed. The FTLD-MND cases exhibited consistently high loadings on PC2 and overlapped with subtypes 2 and 3 of FTLD-TDP. The data suggest: (1) FTLD-MND cases have a consistent pathology, variations in the density of NCI in the DG being the major TDP-43-immunoreactive difference between cases, (2) there are considerable similarities in the neuropathology of FTLD-TDP with and without MND, but with greater neuronal loss in FTLD-MND, and (3) FTLD-MND cases are part of the FTLD-TDP 'continuum' overlapping with FTLD-TDP disease subtypes 2 and 3. © 2012 Nova Science Publishers, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of distributed Kerr-lens mode-locking and a thin-disk Yb:YAG oscillator based on this concept are presented. The described oscillator directly generates pulses with a duration of 49 fs and spectral width of 33 nm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligodendrocytes have multiple functions in the central nervous system including mechanical support of neurons, production of myelin sheaths, and uptake and inactivation of chemical neurotransmitters released by neurons. Consequently, oligodendrocytes could be involved in the pathology of a number of neurodegenerative diseases. Although, the molecular mechanisms involved require further elucidation, it is likely that oligodendrocyte dysfunction is important in Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). In addition, abnormal protein aggregates in the form of oligodendrocyte inclusions (OI) have been observed in several other disorders, most notable in multiple system atrophy (MSA), in which the glial cytoplasmic inclusion (GCI) is the ‘signature’ pathology of the disease. OI have also been identified in argyrophilic grain disease (AGD), progressive supranuclear palsy (PSP) (Armstrong et al 2007), and various forms of frontotemporal lobar degeneration (FTLD) (Armstrong et al 2010), although their role in the pathology of these disorders is less clear. It is likely that future research will expand the range of disorders in which oligodendrocytes play a significant role in neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geometric scaling of a Kerr-lens mode-locked Yb:YAG thin-disk oscillator yields femtosecond pulses with an average output power of 270 W. The scaled system delivers femtosecond (210-330 fs) pulses with a peak power of 38 MW. These values of average and peak power surpass the performance of any previously reported femtosecond laser oscillator operated in atmospheric air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To quantify tau pathology of chronic traumatic encephalopathy (CTE) and investigate influence of dot-like lesions (DL), brain region, co-morbidity, and sporting career length. METHODS: Densities of neurofibrillary tangles (NFT), astrocytic tangles (AT), DL, oligodendroglial inclusions (GI), neuropil threads (NT), vacuoles, neurons, and enlarged neurons (EN) were measured in tau-immunoreactive sections of upper cortical laminae of frontal and temporal lobe, hippocampus (HC), amygdala, and substantia nigra (SN) of eleven cases of CTE. RESULTS: DL were a consistent finding in CTE. Densities of NFT, NT and DL were greatest in sectors CA1 and CA2 of the HC. Densities of AT were lower than NFT, small numbers of GI were recorded in temporal lobe, and low densities of vacuoles and EN were consistently present. β-amyloid containing neuritic plaques (NP) also occurred at low density. Densities of NFT, NT, DL, and AT were greater in sulci than gyri while vacuole density was greater in gyri. Principal components analysis (PCA) suggested that sporting career length and densities of NFT in entorhinal cortex, NT in CA2 and SN, and vacuolation in the DG were significant sources of variation among cases. CONCLUSION: DL are frequent in CTE suggesting affinity with argyrophilic grain disease (AGD) and Parkinson's disease dementia (PD-Dem). Densities of AT in all regions and NT/DL in sectors CA2/4 were consistent features of CTE. The eleven cases are neuropathologically heterogeneous which may result from genetic diversity, and variation in anatomical pathways subjected to trauma. This article is protected by copyright. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper will review the recent advances in the field of ultrashort pulse generation from optically pumped vertical-external-cavity surface-emitting lasers (OP-VECSELs). In this review, we will summarize the most significant results presented over the last 15 years, before highlighting recent breakthroughs related to mode-locked VECSELs by different research groups. Different mode-locking techniques for OP-VECSELs are described in detail. Previously, saturable absorbers, such as semiconductor saturable absorber mirrors—external, or internal as in mode-locked integrated external-cavity surface emitting lasers (MIXSEL)—, and recently, novel-material-based carbon-nanotube and graphene saturable absorbers have been employed. A new mode-locking method was presented and discussed in recent years. This method is referred to as self-mode-locking or saturable-absorber-free operation of mode-locked VECSELs. In this context, we particularly focus on achievements regarding self-mode-locking, which is considered a promising technique for the realization of high-power, compact, robust and cost-efficient ultrashort pulse lasers. To date, the presented mode-locking techniques have led to great enhancement in average powers, peak powers, and repetition rates that can be achieved with passively mode-locked VECSELs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate neuropathological changes in the superior colliculus in chronic traumatic encephalopathy. METHODS: The densities of the tau-immunoreactive neurofibrillary tangles, neuropil threads, dot-like grains, astrocytic tangles, and neuritic plaques, together with abnormally enlarged neurons, typical neurons, vacuolation, and frequency of contacts with blood vessels, were studied across the superior colliculus from pia mater to the periaqueductal gray in eight chronic traumatic encephalopathy and six control cases. RESULTS: Tau-immunoreactive pathology was absent in the superior colliculus of controls but present in varying degrees in all chronic traumatic encephalopathy cases, significant densities of tau-immunoreactive neurofibrillary tangles, NT, or dot-like grains being present in three cases. No significant differences in overall density of the tau-immunoreactive neurofibrillary tangles, neuropil threads, dot-like grains, enlarged neurons, vacuoles, or contacts with blood vessels were observed in control and chronic traumatic encephalopathy cases, but chronic traumatic encephalopathy cases had significantly lower mean densities of neurons. The distribution of surviving neurons across the superior colliculus suggested greater neuronal loss in intermediate and lower laminae in chronic traumatic encephalopathy. Changes in density of the tau-immunoreactive pathology across the laminae were variable, but in six chronic traumatic encephalopathy cases, densities of tau-immunoreactive neurofibrillary tangles, neuropil threads, or dot-like grains were significantly greater in intermediate and lower laminae. Pathological changes were not correlated with the distribution of blood vessels. CONCLUSIONS: The data suggest significant pathology affecting the superior colliculus in a proportion of chronic traumatic encephalopathy cases with a laminar distribution which could compromise motor function rather than sensory analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, vertical-external-cavity surface-emitting lasers (VECSELs) have become promising sources of ultrashort laser pulses. While the mode-locked operation has been strongly relying on costly semiconductor saturable-Absorber mirrors for many years, new techniques have been found for pulse formation. Mode-locking VECSELs are nowadays not only achievable by using a variety of saturable absorbers, but also by using a saturable-Absorber-free technique referred to as self-mode-locking (SML), which is to be highlighted here.