414 resultados para fibre Bragg grating


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using three fibre gratings with excessively tilted structures in the cavity, we have experimentally demonstrated a multiwavelength switchable erbium-doped fibre ring laser system. The three tilted gratings act as in-fibre polariser and polarisation dependent loss filters to induce the polarisation hole burning effect in the cavity for the operation of the laser at single, double, triple and quadruple wavelengths. The laser system has demonstrated good stability under room temperature conditions and also achieved a high degree of polarization (~30dB), high optical signal to noise ratio (up to 63dB) and high side mode suppression (~50dB). The system has also been investigated for temperature and strain sensing by subjecting the seeding fibre Bragg gratings (FBG) to temperature and strain variations. Since the loss band of the polarisation dependent loss filter is broader than the bandwidth of the seeding FBG, the laser output shifts in wavelength with the applied temperature and strain. The fibre ring laser has shown good responses to the temperature and strain, providing sensitivities of approximately 11.7 pm/°C and 0.85pm/µe respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The authors describe a detailed investigation on tilted fiber Bragg grating (TFBG) structures with tilted angles exceeding 45°. In contrast to the backward mode coupling mechanism of Bragg gratings with normal and small tilting structures, the ex-45° TFBGs facilitate the light coupling to the forward-propagating cladding modes. The authors have also theoretically and experimentally examined the mode coupling transition of TFBGs with small, medium, and large tilt angles. In particular, experiments are conducted to investigate the spectra and far-field distribution, as well as temperature, strain, and refractive-index sensitivities of ex-45° devices. It has been revealed that these ex-45° gratings exhibit ultralow thermal sensitivity. As in-fiber devices, they may be superior to conventional Bragg and long-period gratings when the low thermal cross sensitivity is required. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We demonstrate an all-fiber erbium doped fiber laser passively mode-locked using a 45° tilted fiber grating and a fiber Bragg grating in the laser cavity. The laser generates 18ps pulses with output pulse energies ~0.2nJ. © 2014 OSA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fine control of the mPOF Bragg grating spectrum properties, such as maximum reflected power and 3dB bandwidth, through acousto-optic modulation (AOM) using flexural regime is presented. A numerical comparison of the strain field along mPOFBG - AOM and the similar structure with SMFBG-AOM was presented, showing that the strain field amplitude is higher along the mPOFBG due to its smaller mechanical stiffness. The obtained results can be used in the development of fine-tuned optical filters using low voltage sources and low frequency regimes, to obtain tunable optical filters and to control the shape of the spectrum. Studies of the behavior in different gratings (such as phase shifted and long period gratings) for photonic applications, such as tunable notch filters or tunable cavities, are in progress. It can potentially be applied on tunable optical filters for POF transmission. © 2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel method of fiber Bragg grating design based on tailored group delay is presented. The method leads to designs that are superior to the previously reported results. © OSA 2012.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At the level of fundamental research, fibre lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes, while at the applied research level, pulses with different and optimised features – e.g., in terms of pulse duration, temporal and/or spectral shape, energy, repetition rate and emission bandwidth – are sought with the general constraint of developing efficient cavity architectures. In this work, we review our recent progress on the realisation of pulse shaping in passively- mode-locked fibre lasers by inclusion of an amplitude and phase spectral filter into the laser cavity. We present a fibre laser design in which pulse shaping occurs through filtering of a spectrally nonlinearly broadened pulse in the cavity. This strategy of pulse shaping is illustrated through the numerical demonstration of the laser operation in different pulse-generation regimes, including parabolic, flattop and triangular waveform generations, depending on the amplitude profile of the in-cavity spectral filter [1]. As an application of this general approach, we show that the use of an in-cavity flat-top spectral filter makes it possible to directly generate sinc-shaped Nyquist pulses of high quality and of a widely tunable bandwidth from the laser [2]. We also report on a recently-developed versatile erbium-doped fibre laser, in which conventional soliton, dispersion-managed soliton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by programming different group-velocity dispersion profiles and bandwidths on an in-cavity programmable filter [3]. Further, we report on our recent results on the passive mode locking of a Raman fibre laser by a recently predicted new type of parametric instability – the dissipative Faraday instability [4], where spatially periodic zig-zag modulation of spectrally dependent losses can lead to pattern formation in the temporal domain. High-order harmonic mode locking is achieved in a very simple experimental configuration, with the laser cavity including an optical fibre and two chirped fibre Bragg gratings, and no additional mode-locking elements. The results not only open up new possibilities for the design of mode-locked lasers, but extend beyond fibre optics to other fields of physics and engineering. References [1] S. Boscolo, C. Finot, H. Karakuzu, P. Petropoulos, “Pulse shaping in mode-locked fiber laser by in-cavity spectral filter,” Opt. Lett., vol. 39, pp. 438–441, 2014. [2] S. Boscolo, C. Finot, S. K. Turitsyn, “Bandwidth programmable optical Nyquist pulse generation in passively mode-locked fiber laser,” IEEE Photon. J., vol. 7, 7802008(8), 2015. [3] J. Peng, S. Boscolo, “Filter-based dispersion-managed versatile ultrafast fibre laser,” Sci. Rep., 2016, In press. [4] A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett., vol. 116, 028701, 2016.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymer photonic crystal fibres combine two relatively recent developments in fibre technology. On the one hand, polymer optical fibre has very different physical and chemical properties to silica. In particular, polymer fibre has a much smaller Young's modulus than silica, can survive higher strains, is amenable to organic chemical processing and, depending on the constituent polymer, may absorb water. All of these features can be utilised to extend the range of applications of optical fibre sensors. On the other hand, the photonic crystal - or microstructured - geometry also offers advantages: flexibility in the fibre design including control of the dispersion properties of core and cladding modes, the possibility of introducing minute quantities of analyte directly into the electric field of the guided light and enhanced pressure sensitivity. When brought together these two technologies provide interesting possibilities for fibre sensors, particularly when combined with fibre Bragg or long period gratings. This paper discusses the features of polymer photonic crystal fibre relevant to sensing and provides examples of the applications demonstrated to date. © 2010 Copyright SPIE - The International Society for Optical Engineering.