484 resultados para optical fiber sensors


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a simple optical chemsensor device based on tilted Bragg grating structures ultraviolet-inscribed in conventional multimode fiber and sensitized by a hydrofluoric (HF)-etching treatment. The transition behaviors of fiber Bragg gratings (FBGs) from normal to tilted structures and their spectral evolution under HF-etching have been studied. The etched devices have been used to measure the concentrations of sugar solution, showing a potential capability of detecting concentration changes as small as 0.5%, which is an order of magnitude lower than that of previously reported FBG sensors in single-mode fiber.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Two in-fiber Bragg grating (FBG) temperature sensor systems for medical applications are demonstrated: (1) an FBG flow-directed thermodilution catheter based on interferometric detection of wavelength shift that is used for cardiac monitoring; and (2) an FBG sensor system with a tunable Fabry-Perot filter for in vivo temperature profiling in nuclear magnetic resonance (NMR) machines. Preliminary results show that the FBG sensor is in good agreement with electrical sensors that are widely used in practice. A field test shows that the FBG sensor system is suitable for in situ temperature profiling in NMR machines for medical applications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present what is to our knowledge the first comprehensive investigation of the use of blazed fiber Bragg gratings (BFBGs) to interrogate wavelength division multiplexed (WDM) in-fiber optical sensor arrays. We show that the light outcoupled from the core of these BFBGs is radiated with sufficient optical power that it may be detected with a low-cost charge-coupled device (CCD) array. We present thorough system performance analysis that shows sufficient spectral-spatial resolution to decode sensors with a WDM separation of 75 ρm, signal-to-noise ratio greater than 45-dB bandwidth of 70 nm, and drift of only 0.1 ρm. We show the system to be polarization-state insensitive, making the BFBG-CCD spectral analysis technique a practical, extremely low-cost, alternative to traditional tunable filter approaches.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume and the corresponding change in a local thorax curvature. They also show good sensor accuracy in measurements of tidal and minute respiratory volumes for different types of breathing. The proposed technique does not rely on the air flow through an oronasal mask or the observation of chest movement by a clinician, which distinguishes it from the current clinical practice. © 2014 Optical Society of America.

Relevância:

50.00% 50.00%

Publicador:

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We report on a systematic investigation of the dependence of both temperature and strain sensitivities on the fiber Bragg grating type, including the well-known Type I, Type IIA, and a new type that we have designated Type IA, using both hydrogen-free and hydrogenated B/Ge codoped fibres. We have identified distinct sensitivity characteristics for each grating type, and we have used them to implement a novel dual-grating, dual-parameter sensor device. Three dual-grating sensing schemes with different combinations of grating type have been constructed and compared, and that of a Type IA-Type IIA combination exhibits the best performance, which is also superior to that of previously reported grating-based structures. The characteristics of the measurement errors in such dual-grating sensor systems is also presented in detail. © 2004 Optical Society of America.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

For the first time to the authors' knowledge, fiber Bragg gratings (FBGs) with >80° tilted structures nave been fabricated and characterized. Their performance in sensing temperature, strain, and the surrounding medium's refractive index was investigated. In comparison with normal FBGs and long-period gratings (LPGs), >80° tilted FBGs exhibit significantly higher refractive-index responsivity and lower thermal cross sensitivity. When the grating sensor was used to detect changes in refractive index, a responsivity as high as 340 nm/refractive-index unit near an index of 1.33 was demonstrated, which is three times higher than that of conventional LPGs. © 2006 Optical Society of America.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We demonstrate highly sensitive temperature and strain sensors based on an all-fiber Lyot filter structure, which is formed by concatenating two 45°-TFGs (tilted fiber gratings) with a PM fiber cavity. The experiment results show the all-fiber 45°-TFG Lyot filter has very high sensitivity to strain and temperature. The 45°-TFG Lyot filters of two different cavity lengths (18cm and 40 cm) have been evaluated for temperature sensing by heating a section of the cavity from 10°C to 50°C. The experiment results have shown remarkably high temperature sensitivities of 0.616nm/°C for 18cm and 0.31nm/°C for 40cm long cavity filter, respectively. The 18cm long cavity filter has been subjected to strain variations up to around 550μ ε and the filter has exhibited strain sensitivities of 0.02499nm/μ ε and 0.012nm/μ ε for two straining situations, where its cavity middle section of 18cm and 9cm were stretched, respectively. © 2012 SPIE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution. © 2014 SPIE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are employed in a Michelson interferometer setup with one grating serving as the reference grating whereas the other serving as the sensing element. Broadband spectral interferogram is formed and the strain information is encoded into the wavelength-dependent free spectral range (FSR). Ultrafast interrogation is achieved based on dispersion-induced time stretch such that the target spectral interferogram is mapped to a temporal interference waveform that can be captured in real-Time using a single-pixel photodector. The distributed strain along the sensing grating can be reconstructed from the instantaneous RF frequency of the captured waveform. High-spatial resolution is also obtained due to high-speed data acquisition. In a proof-of-concept experiment, ultrafast real-Time interrogation of fully-distributed grating sensors with various strain distributions is experimentally demonstrated. An ultrarapid measurement speed of 50 MHz with a high spatial resolution of 31.5 μm over a gauge length of 25 mm and a strain resolution of 9.1 μϵ have been achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transmission of a 10-Gb/s data stream was demonstrated experimentally over a practically unlimited distance in a standard single-mode fiber system using nonlinear optical loop mirrors as simple in-line 2R regenerators. Error-free propagation over 100 000 km has been achieved with terrestrial amplifier spacing. © 2004 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a novel technique to provide demultiplexing of fiber Bragg grating sensors, interrogated using interferometric wavelength shift detection. Amplitude modulation of multiple radio frequency driving signals allows an acoustooptic tunable filter to provide wavelength demultiplexing. We demonstrated a noise limited strain resolution of 150 nanostrain/v(Hz) and a crosstalk better than -50 dB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the properties of radiation generated in ultralong fiber lasers and find an interesting link between these optical systems and the theory of weak wave turbulence. Experimental observations strongly suggest that turbulentlike weak interactions between the multitude of laser cavity modes are responsible for practical characteristics of ultralong fiber lasers such as spectra of the output radiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel optical chemsensor concept based on the cladding etched Bragg gratings in D-fiber is demonstrated. Two etched devices have been used to measure the concentrations of sugar solution, giving sensitivity as high as 0.02nm/%.