418 resultados para Mironenko, Sergei
Resumo:
Here we present the design and fabrication of multi-notch optical fibre Bragg gratings for suppressing OH emission lines in the near infrared spectra of the night sky for astrophysical applications. We demonstrate a novel approach of fabricating 2, 3 and 5-notch filters using the phase mask technology, which show a good match with the model.
Resumo:
Applying high-speed polarimetery we experimentally demonstrate new types of vector solitons for multipulse operation in an erbium doped carbon nanotube mode-locked laser. The observed states of polarisation reveal either fast pulse-to-pulse polarisation switching between crosspolarised modes or slow cyclic evolution.
Resumo:
We present the compensation of the equalization enhanced phase noise (EEPN) in the long-haul n-level phase shift keying (n-PSK) coherent optical transmission system, by employing a scheme of phase modulated optical pilot carrier. © OSA 2013.
Resumo:
We propose and numerically demonstrate a novel simple method to produce optical Nyquist pulses based on pulse shaping in a passively mode-locked fiber laser with an in-cavity flat-top spectral filter. The proposed scheme takes advantage of the nonlinear in-cavity dynamics of the laser and offers the possibility to generate high-quality sinc-shaped pulses with widely tunable bandwidth directly from the laser oscillator. We also show that the use of a filter with a corrective convex profile relaxes the need for large nonlinear phase accumulation in the cavity by offsetting the concavity of the nonlinearly broadened pulse spectrum.
Resumo:
Mode-locked fiber lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes. The complex interplay among the effects of gain/loss, dispersion and nonlinearity in a fiber cavity can be used to shape the pulses and manipulate and control the light dynamics and, hence, lead to different mode-locking regimes. Major steps forward in pulse energy and peak power performance of passively mode-locked fiber lasers have been made with the recent discovery of new nonlinear regimes of pulse generation, namely, dissipative solitons in all-normal-dispersion cavities and parabolic self-similar pulses (similaritons) in passive and active fibers. Despite substantial research in this field, qualitatively new phenomena are still being discovered. In this talk, we review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fiber lasers. These include similariton mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fiber laser by inclusion of a spectral filter into the laser cavity.
Resumo:
We numerically show the feasibility of Nyquist optical pulse generation in a mode-locked fibre laser with an in-cavity flat-top spectral filter. The proposed scheme offers the possibility to generate high-quality sinc-shaped pulses with tunable bandwidth.
Resumo:
We demonstrate an effective decision-directed-free blind phase noise compensation method for CO-OFDM transmission. By applying this technique, the common phase error can be accurately estimated using as few as three test phases.
Resumo:
We have proposed and demonstrated passive harmonic mode locking of an erbium doped fiber laser with soliton pulse shaping using carbon nanotubes polyvinyl alcohol film. Two types of samples prepared by using filtration and centrifugation were studied. The demonstrated fiber laser can support 10th harmonic order corresponding to 245 MHz repetition rate with an output power of ~12 mW. More importantly, all stable harmonic orders show timing jitter below 10 ps. The output pulses energies are between 25 to 56 pJ. Both samples result in the same central wavelength of output optical spectrum with similar pulse duration of ~1 ps for all harmonic orders. By using the same laser configuration, centrifugated sample exhibits slightly lower pulse chirp. © 2012 Optical Society of America.
Resumo:
Hollow nanostructures with a highly oriented lattice structure and active facets are promising for catalytic applications, while their preparation via traditional approaches contains multiple steps and is time and energy consuming. Here, we demonstrate a new one-step strategy involving two complementary reactions which promote each other; it is capable of producing unique hollow nanoparticles. Specifically, we apply synergic cooperation of cation exchange and chemical etching to attack PbS nanosized cubes (NCs) and produce CdS quasi-monocrystal nanoboxes (QMNBs) which possess the smallest dimensions reported so far, a metastable zinc-blende phase, a large specific surface area, and particularly high-energy {100} facets directly visualized by aberration-corrected scanning transmission electron microscopy. These properties in combination allow the nanoboxes to acquire exceptional photocatalytic activities. As an extension of the approach, we use the same strategy to prepare Co9S8 and Cu7.2S4 single-crystal hollow nanooctahedrons (SCHNOs) successfully. Hence, the synergic reaction synthesis strategy exhibits great potential in engineering unique nanostructures with superior properties.
Resumo:
We report on an experimental study of intermittent self-pulsing caused by the coupling of the first and second Stokes cascades in a fiber Raman laser © 2012 OSA.
Spectral width and pulse duration tuning in Yb+ modelocked fiber laser with birefringent Lyot filter
Resumo:
A method of pulse duration and spectral width control in all-fiber Ytterbium modelocked laser with SWCNT is presented. It is shown that PM-fiber can also serve as a spectrally selective filter. © 2012 OSA.
Resumo:
We demonstrate experimentally and study theoretically new type of stable pulse structures in erbium-doped fibre lasers - slowly polarisation evolving vector solitons. Demonstrated vector solitons precess with characteristic times of 100-1000 round trips and their trajectories form a double semicircle on the Poincaré sphere. © 2012 Optical Society of America.
Resumo:
Narrow-band generation is achieved in random distributed feedback (RDFB) fiber laser by using narrow-band filters in the center of a distributed cavity. The resulting line-width of ∼0.1 nm is 10 times less than line-width in classical random distributed feedback fiber laser. Spectral properties can be optimized further. © 2012 OSA.
Analysis of carrier phase extraction methods in 112-Gbit/s NRZ-PDM-QPSK coherent transmission system
Resumo:
We present a comparative analysis on three carrier phase extraction approaches, including a one-tap normalized least mean square method, a block-average method, and a Viterbi-Viterbi method, in coherent transmission system considering equalization enhanced phase noise. © OSA 2012.