418 resultados para Mironenko, Sergei


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an in-fiber laser mode locker based on carbon nanotube with n-methyl-2-pryrrolidone solvent filled in-fiber microchamber. Symmetrically femtosecond laser fabricated in-fiber microchamber with randomly oriented nanotubes assures polarization insensitive oscillation of laser mode locking. The proposed and demonstrated passively mode locked fiber laser shows higher energy soliton output. The laser has an output power of ∼29 mW (corresponding to 11 nJ energy). It shows stable soliton output with a repetition rate of ∼2.3 MHz and pulse width of ∼3.37 ps. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of physical and engineering systems exhibit an irregular complex dynamics featuring alternation of quiet and burst time intervals called the intermittency. The intermittent dynamics most popular in laser science is the on-off intermittency [1]. The on-off intermittency can be understood as a conversion of the noise in a system close to an instability threshold into effective time-dependent fluctuations which result in the alternation of stable and unstable periods. The on-off intermittency has been recently demonstrated in semiconductor, Erbium doped and Raman lasers [2-5]. Recently demonstrated random distributed feedback (random DFB) fiber laser has an irregular dynamics near the generation threshold [6,7]. Here we show the intermittency in the cascaded random DFB fiber laser. We study intensity fluctuations in a random DFB fiber laser based on nitrogen doped fiber. The laser generates first and second Stokes components 1120 nm and 1180 nm respectively under an appropriate pumping. We study the intermittency in the radiation of the second Stokes wave. The typical time trace near the generation threshold of the second Stokes wave (Pth) is shown at Fig. 1a. From the number of long enough time-traces we calculate statistical distribution between major spikes in time dynamics, Fig. 1b. To eliminate contribution of high frequency components of spikes we use a low pass filter along with the reference value of the output power. Experimental data is fitted by power law, ~(P-Pth)y, where is a mean time between pikes. There are two different intermittency regimes. Just above Pth, the mean time is approximated by the -3/2 power law. The -3/2 power law is typical to the on-off intermittency with hopping between two states (first and second Stokes waves in our case) [7]. At higher power, the mean time is approximated by -4 power law, that indicates a change in intermittency type to multistate. Multistable dynamics is observed in erbium-doped fiber lasers [8]. The origin of multiples states in our system could be probably connected with polarization hopping or other reasons and should be further investigated. We have presented a first experimental statistical characterisation of the on-off and multistate intermittencies that occur in the generation of the second Stokes wave in nitrogen doped random DFB fiber laser. References [1] H. Fujisaka and T. Yamada, “A New Intermittency in Coupled Dynamical Systems,” Prog. Theor. Phys. 74, 918 (1985). [2] S. Osborne, A. Amann, D. Bitauld, and S. O’Brien, “On-off intermittency in an optically injected semiconductor laser,” Phys. Rev. E 85, 056204 (2012). [3] S. Sergeyev, K. O'Mahoney, S. Popov, and A. T. Friberg, “Coherence and anticoherence resonance in high-concentration erbium-doped fiber laser,” Opt. Lett. 35, 3736 (2010). [4] A.E. El-Taher, S.V. Sergeyev, E.G. Turitsyna, P. Harper, and S. K. Turitsyn, “Intermittent Self-Pulsing in a Fiber Raman Laser”, In proc. Conf. Nonlin. Photon., paper ID 1367139, Colorado Springs, USA, 2012 [5] S.K. Turitsyn, S.A. Babin, A.E. El-Taher, P. Harper, D.V. Churkin, S.I. Kablukov, J.D. Ania-Castañón, V. Karalekas, and E.V. Podivilov, “Random distributed feedback fibre laser”, Nat. Photon..4, 231 (2010). [6] I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, "Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm," Opt. Express 19, 18486 (2011). [7] W. Feller, An introduction to probability theory and its applications, Vol. 1, 3rd ed. (Wiley, New-York, 1968). [8] G. Huerta-Cuellar, A.N. Pisarchik, and Y.O. Barmenkov, “Experimental characterization of hopping dynamics in a multistable fiber laser,” Phys. Rev. E 78, 035202(R) (2008).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrödinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DM solitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable autosoliton solutions are obtained for a particular application of the general theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results on characterization of lasers with ultra-long cavity lengths up to 84km, the longest cavity ever reported. We have analyzed the mode structure, shape and width of the generated spectra, intensity fluctuations depending on length and intra-cavity power. The RF spectra exhibit an ultra-dense cavity mode structure (mode spacing is 1.2kHz for 84km), in which the width of the mode beating is proportional to the intra-cavity power while the optical spectra broaden with power according to the square-root law acquiring a specific shape with exponential wings. A model based on wave turbulence formalism has been developed to describe the observed effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we analyzed by means of numerical and laboratory experiments the resilience of 40 Gb/s amplitude shift keying modulation formats to transmission impairments in standard single-mode fiber lines as well as to optical filtering introduced by the optical add/drop multiplexer cascade. Our study is a pre-requisite to assess the implementation of cost-effective 40 Gb/s modulation technology in next generation high bit-rate robust optical transport networks. © 2006 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct computation of the bit-error rate (BER) and laboratory experiments are used to assess the performance of a non-slope matched transoceanic submarine transmission link operating at 20Gb/s channel rate and employing return-to-zero differential-phase shift keying (RZ-DPSK) signal modulation. Using this system as an example, we compare the accuracies of the existing theoretical approaches to the BER estimation for the RZ-DPSK format. © 2007 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of liquid medium and its pressure on the photoluminescence of ZnO nanoparticles prepared via laser ablation of Zn targets in various water-ethanol mixtures is studied. As the ethanol content increases, the photoluminescence of the product changes, while metallic zinc is observed to emerge in nanomaterials prepared in ethanol-rich environments. The applied pressure had a less profound effect, mainly affecting materials produced in water or water-ethanol, and much less those generated in pressurized ethanol. Tuning the reactivity of the liquid and pressurizing it during laser ablation is demonstrated to be promising for tailoring the emission properties of the product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as μM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate experimentally new families of vector solitons with the precessing states of polarization for multipulse soliton operations in a carbon nanotube mode-locked fiber laser with anomalous dispersion laser cavity. © 2013 OSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a performance evaluation of a non-conventional approach to implement phase noise tolerant optical systems with multilevel modulation formats. The performance of normalized Viterbi-Viterbi carrier phase estimation (V-V CPE) is investigated in detail for circular m-level quadrature amplitude modulation (C-mQAM) signals. The intrinsic property of C-mQAM constellation points with a uniform phase separation allows a straightforward employment of V-V CPE without the need to adapt constellation. Compared with conventional feed-forward CPE for square QAM signals, the simulated results show an enhanced tolerance of linewidth symbol duration product (ΔvTs) at a low sensitivity penalty by using feed-forward CPE structure with C-mQAM. This scheme can be easily upgraded to higher order modulations without inducing considerable complexity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hierarchical nanowires (HNWs) exhibit unique properties and have wide applications, while often suffering from imperfect structure. Herein, we report a facile strategy toward ultrathin CdS HNWs with monocrystal structure, where a continuous-wave (CW) Nd:YAG laser is employed to irradiate an oleic acid (OA) solution containing precursors and a light absorber. The high heating rate and large temperature gradient generated by the CW laser lead to the rapid formation of tiny zinc-blende CdS nanocrystals which then line up into nanowires with the help of OA molecules. Next, the nanowires experience a phase transformation from zinc-blende to wurtzite structure, and the transformation-induced stress creates terraces on their surface, which promotes the growth of side branches and eventually results in monocrystal HNWs with an ultrathin diameter of 24 nm. The one-step synthesis of HNWs is conducted in air and completes in just 40 s, thus being very simple and rapid. The prepared CdS HNWs display photocatalytic performance superior to their nanoparticle counterparts, thus showing promise for catalytic applications in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present first investigation of polarization dynamics from a carbon nanotube mode locked erbium doped fiber laser. Both vector and polarization switching dissipative soliton have been observed. © 2014 Optical Society of America.