21 resultados para white-matter integrity
Resumo:
Context - Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. Objective - To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design - Cross-sectional, case-control, whole-brain DTI using TBSS. Setting - University research institute. Participants - Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures - Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results - Subjects with BD vs controls had significantly greater FA (t > 3.0, P = .05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P = .05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P < .01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P < .01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions - To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.
Resumo:
Background - Bipolar disorder (BD) is one of the leading causes of disability worldwide. Patients are further disadvantaged by delays in accurate diagnosis ranging between 5 and 10 years. We applied Gaussian process classifiers (GPCs) to structural magnetic resonance imaging (sMRI) data to evaluate the feasibility of using pattern recognition techniques for the diagnostic classification of patients with BD. Method - GPCs were applied to gray (GM) and white matter (WM) sMRI data derived from two independent samples of patients with BD (cohort 1: n = 26; cohort 2: n = 14). Within each cohort patients were matched on age, sex and IQ to an equal number of healthy controls. Results - The diagnostic accuracy of the GPC for GM was 73% in cohort 1 and 72% in cohort 2; the sensitivity and specificity of the GM classification were respectively 69% and 77% in cohort 1 and 64% and 99% in cohort 2. The diagnostic accuracy of the GPC for WM was 69% in cohort 1 and 78% in cohort 2; the sensitivity and specificity of the WM classification were both 69% in cohort 1 and 71% and 86% respectively in cohort 2. In both samples, GM and WM clusters discriminating between patients and controls were localized within cortical and subcortical structures implicated in BD. Conclusions - Our results demonstrate the predictive value of neuroanatomical data in discriminating patients with BD from healthy individuals. The overlap between discriminative networks and regions implicated in the pathophysiology of BD supports the biological plausibility of the classifiers.
Resumo:
Objectives: The sex of an individual is known to modulate the clinical presentation of bipolar disorder (BD), but little is known as to whether there are significant sex-by-diagnosis interactions on the brain structural and functional correlates of BD. Methods: We conducted a literature review of magnetic resonance imaging (MRI) studies in BD, published between January 1990 and December 2010, reporting on the effects of sex and diagnosis. In the absence of any functional MRI (fMRI) studies, this review was supplemented by original data analyses focusing on sex-by-diagnosis interactions on patterns of brain activation obtained during tasks of working memory, incentive decision-making, and facial affect processing. Results: We found no support for a sex-by-diagnosis interaction in global gray or white matter volume. Evidence regarding regional volumetric measures is limited, but points to complex interactions between sex and diagnosis with developmental and temperamental factors within limbic and prefrontal regions. Sex-by-diagnosis interactions were noted in the pattern of activation within the basal ganglia during incentive decision-making and within ventral prefrontal regions during facial affect processing. Conclusions: Potential sex-by-diagnosis interactions influencing the brain structural and functional correlates of disease expression in BD have received limited attention. Our data suggest that the sex of an individual modulates structure and function within subcortical and cortical regions implicated in disease expression. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S.
Resumo:
Familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP) is most commonly caused by progranulin (GRN) gene mutation. To characterize cortical degeneration in these cases, changes in density of the pathology across the cortical laminae of the frontal and temporal lobe were studied in seven cases of FTLD-TDP with GRN mutation using quantitative analysis and polynomial curve fitting. In 50% of gyri studied, neuronal cytoplasmic inclusions (NCI) exhibited a peak of density in the upper cortical laminae. Most frequently, neuronal intranuclear inclusions (NII) and dystrophic neurites (DN) exhibited a density peak in lower and upper laminae, respectively, glial inclusions (GI) being distributed in low densities across all laminae. Abnormally enlarged neurons (EN) were distributed either in the lower laminae or were more uniformly distributed across the cortex. The distribution of all neurons present varied between cases and regions, but most commonly exhibited a bimodal distribution, density peaks occurring in upper and lower laminae. Vacuolation primarily affected the superficial laminae and density of glial cell nuclei increased with distance across the cortex from pia mater to white matter. The densities of the NCI, GI, NII, and DN were not spatially correlated. The laminar distribution of the pathology in GRN mutation cases was similar to previously reported sporadic cases of FTLD-TDP. Hence, pathological changes initiated by GRN mutation, and by other causes in sporadic cases, appear to follow a parallel course resulting in very similar patterns of cortical degeneration in FTLD-TDP.
Resumo:
Multiple system atrophy (MSA) is a rare neurodegenerative disorder associated with parkinsonism, ataxia, and autonomic dysfunction. Its pathology is primarily subcortical comprising vacuolation, neuronal loss, gliosis, and α-synuclein-immunoreactive glial cytoplasmic inclusions (GO). To quantify cerebellar pathology in MSA, the density and spatial pattern of the pathological changes were studied in α-synuclein-immunolabelled sections of the cerebellar hemisphere in 10 MSA and 10 control cases. In MSA, densities of Purkinje cells (PC) were decreased and vacuoles in the granule cell layer (GL) increased compared with controls. In six MSA cases, GCI were present in cerebellar white matter. In the molecular layer (ML) and GL of MSA, vacuoles were clustered, the clusters exhibiting a regular distribution parallel to the edge of the folia. Purkinje cells were randomly or regularly distributed with large gaps between surviving cells. Densities of glial cells and surviving neurons in the ML and surviving cells and vacuoles in the GL were negatively correlated consistent with gliosis and vacuolation in response to neuronal loss. Principal components analysis (PCA) suggested vacuole densities in the ML and vacuole density and cell losses in the GL were the main source of neuropathological variation among cases. The data suggest that: (1) cell losses and vacuolation of the GCL and loss of PC were the most significant pathological changes in the cases studied, (2) pathological changes were topographically distributed, and (3) cerebellar pathology could influence cerebral function in MSA via the cerebello-dentato-thalamic tract.
Resumo:
Bilateral Perisylvian Syndrome (BPS) often presents with epilepsy and significant behavioral impairments that can include mental retardation, dysarthria, delayed speech development, and delayed fine motor development (Graff-Radford et al., 1986 and Kuzniecky et al., 1993). While a small subset of BPS cases have been described as having relatively isolated language delays (Leventer et al., 2010), BPS is not expected in children with dyslexia. As part of a Medical University of South Carolina, IRB approved multi-site study involving retrospective and de-identified dyslexia data, we unexpectedly identified a 14.05 year old male with evidence of BPS whose father had been diagnosed with dyslexia and dysgraphia. This child had been recruited for a neuroimaging study on dyslexia from a school specializing in educating children with dyslexia. The T1-weighted MRI scan from this child demonstrated a highly unusual perisylvian sulcal/gyral patterning that is a defining feature of BPS (Fig. 1). BPS cases exhibit bilateral dysgenesis of the Sylvian fissure and surrounding gyri, which appears to occur because of a limited or absent arcuate fasciculus (Kilinc, Ekinci, Demirkol, & Agan, 2015). This BPS case also had a relatively enlarged atrium of the lateral ventricle that is consistent with the BPS anatomical presentation and reduction of parietal white matter (Graff-Radford et al., 1986, Kilinc et al., 2015 and Toldo et al., 2011).