27 resultados para web-based discussion
Resumo:
This paper reports the results of a web-based study of the perceptions of accounting journals in Australasia. Journal ranking studies have generally adopted citation techniques or used academics’ perceptions as the basis for assessing journal quality. Our research contributes to the existing literature by conducting a survey of academics in Australasia using a web-based instrument. The analysis indicates that the perceptions of the so-called “elite” accounting journals have become unsettled. The research highlights the emergence of more recent, alternative paradigm journals (CPA and AAAJ) as both highly ranking.
Resumo:
The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management systems, Enterprise Resource Planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan. Copyright © 2010 Inderscience Enterprises Ltd.
Resumo:
Objectives: To develop a decision support system (DSS), myGRaCE, that integrates service user (SU) and practitioner expertise about mental health and associated risks of suicide, self-harm, harm to others, self-neglect, and vulnerability. The intention is to help SUs assess and manage their own mental health collaboratively with practitioners. Methods: An iterative process involving interviews, focus groups, and agile software development with 115 SUs, to elicit and implement myGRaCE requirements. Results: Findings highlight shared understanding of mental health risk between SUs and practitioners that can be integrated within a single model. However, important differences were revealed in SUs' preferred process of assessing risks and safety, which are reflected in the distinctive interface, navigation, tool functionality and language developed for myGRaCE. A challenge was how to provide flexible access without overwhelming and confusing users. Conclusion: The methods show that practitioner expertise can be reformulated in a format that simultaneously captures SU expertise, to provide a tool highly valued by SUs. A stepped process adds necessary structure to the assessment, each step with its own feedback and guidance. Practice Implications: The GRiST web-based DSS (www.egrist.org) links and integrates myGRaCE self-assessments with GRiST practitioner assessments for supporting collaborative and self-managed healthcare.
Resumo:
This paper investigates the use of web-based textbook supplementary teaching and learning materials which include multiple choice test banks, animated demonstrations, simulations, quizzes and electronic versions of the text. To gauge their experience of the web-based material students were asked to score the main elements of the material in terms of usefulness. In general it was found that while the electronic text provides a flexible platform for presentation of material there is a need for continued monitoring of student use of this material as the literature suggests that digital viewing habits may mean there is little time spent in evaluating information, either for relevance, accuracy or authority. From a lecturer perspective these materials may provide an effective and efficient way of presenting teaching and learning materials to the students in a variety of multimedia formats, but at this stage do not overcome the need for a VLE such as Blackboard™.
Resumo:
Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.
Resumo:
Models are central tools for modern scientists and decision makers, and there are many existing frameworks to support their creation, execution and composition. Many frameworks are based on proprietary interfaces, and do not lend themselves to the integration of models from diverse disciplines. Web based systems, or systems based on web services, such as Taverna and Kepler, allow composition of models based on standard web service technologies. At the same time the Open Geospatial Consortium has been developing their own service stack, which includes the Web Processing Service, designed to facilitate the executing of geospatial processing - including complex environmental models. The current Open Geospatial Consortium service stack employs Extensible Markup Language as a default data exchange standard, and widely-used encodings such as JavaScript Object Notation can often only be used when incorporated with Extensible Markup Language. Similarly, no successful engagement of the Web Processing Service standard with the well-supported technologies of Simple Object Access Protocol and Web Services Description Language has been seen. In this paper we propose a pure Simple Object Access Protocol/Web Services Description Language processing service which addresses some of the issues with the Web Processing Service specication and brings us closer to achieving a degree of interoperability between geospatial models, and thus realising the vision of a useful 'model web'.
Resumo:
This thesis provides a set of tools for managing uncertainty in Web-based models and workflows.To support the use of these tools, this thesis firstly provides a framework for exposing models through Web services. An introduction to uncertainty management, Web service interfaces,and workflow standards and technologies is given, with a particular focus on the geospatial domain.An existing specification for exposing geospatial models and processes, theWeb Processing Service (WPS), is critically reviewed. A processing service framework is presented as a solutionto usability issues with the WPS standard. The framework implements support for Simple ObjectAccess Protocol (SOAP), Web Service Description Language (WSDL) and JavaScript Object Notation (JSON), allowing models to be consumed by a variety of tools and software. Strategies for communicating with models from Web service interfaces are discussed, demonstrating the difficultly of exposing existing models on the Web. This thesis then reviews existing mechanisms for uncertainty management, with an emphasis on emulator methods for building efficient statistical surrogate models. A tool is developed to solve accessibility issues with such methods, by providing a Web-based user interface and backend to ease the process of building and integrating emulators. These tools, plus the processing service framework, are applied to a real case study as part of the UncertWeb project. The usability of the framework is proved with the implementation of aWeb-based workflow for predicting future crop yields in the UK, also demonstrating the abilities of the tools for emulator building and integration. Future directions for the development of the tools are discussed.
Resumo:
As a new medium for questionnaire delivery, the internet has the potential to revolutionise the survey process. Online (web-based) questionnaires provide several advantages over traditional survey methods in terms of cost, speed, appearance, flexibility, functionality, and usability [1, 2]. For instance, delivery is faster, responses are received more quickly, and data collection can be automated or accelerated [1- 3]. Online-questionnaires can also provide many capabilities not found in traditional paper-based questionnaires: they can include pop-up instructions and error messages; they can incorporate links; and it is possible to encode difficult skip patterns making such patterns virtually invisible to respondents. Like many new technologies, however, online-questionnaires face criticism despite their advantages. Typically, such criticisms focus on the vulnerability of online-questionnaires to the four standard survey error types: namely, coverage, non-response, sampling, and measurement errors. Although, like all survey errors, coverage error (“the result of not allowing all members of the survey population to have an equal or nonzero chance of being sampled for participation in a survey” [2, pg. 9]) also affects traditional survey methods, it is currently exacerbated in online-questionnaires as a result of the digital divide. That said, many developed countries have reported substantial increases in computer and internet access and/or are targeting this as part of their immediate infrastructural development [4, 5]. Indicating that familiarity with information technologies is increasing, these trends suggest that coverage error will rapidly diminish to an acceptable level (for the developed world at least) in the near future, and in so doing, positively reinforce the advantages of online-questionnaire delivery. The second error type – the non-response error – occurs when individuals fail to respond to the invitation to participate in a survey or abandon a questionnaire before it is completed. Given today’s societal trend towards self-administration [2] the former is inevitable, irrespective of delivery mechanism. Conversely, non-response as a consequence of questionnaire abandonment can be relatively easily addressed. Unlike traditional questionnaires, the delivery mechanism for online-questionnaires makes estimation of questionnaire length and time required for completion difficult1, thus increasing the likelihood of abandonment. By incorporating a range of features into the design of an online questionnaire, it is possible to facilitate such estimation – and indeed, to provide respondents with context sensitive assistance during the response process – and thereby reduce abandonment while eliciting feelings of accomplishment [6]. For online-questionnaires, sampling error (“the result of attempting to survey only some, and not all, of the units in the survey population” [2, pg. 9]) can arise when all but a small portion of the anticipated respondent set is alienated (and so fails to respond) as a result of, for example, disregard for varying connection speeds, bandwidth limitations, browser configurations, monitors, hardware, and user requirements during the questionnaire design process. Similarly, measurement errors (“the result of poor question wording or questions being presented in such a way that inaccurate or uninterpretable answers are obtained” [2, pg. 11]) will lead to respondents becoming confused and frustrated. Sampling, measurement, and non-response errors are likely to occur when an online-questionnaire is poorly designed. Individuals will answer questions incorrectly, abandon questionnaires, and may ultimately refuse to participate in future surveys; thus, the benefit of online questionnaire delivery will not be fully realized. To prevent errors of this kind2, and their consequences, it is extremely important that practical, comprehensive guidelines exist for the design of online questionnaires. Many design guidelines exist for paper-based questionnaire design (e.g. [7-14]); the same is not true for the design of online questionnaires [2, 15, 16]. The research presented in this paper is a first attempt to address this discrepancy. Section 2 describes the derivation of a comprehensive set of guidelines for the design of online-questionnaires and briefly (given space restrictions) outlines the essence of the guidelines themselves. Although online-questionnaires reduce traditional delivery costs (e.g. paper, mail out, and data entry), set up costs can be high given the need to either adopt and acquire training in questionnaire development software or secure the services of a web developer. Neither approach, however, guarantees a good questionnaire (often because the person designing the questionnaire lacks relevant knowledge in questionnaire design). Drawing on existing software evaluation techniques [17, 18], we assessed the extent to which current questionnaire development applications support our guidelines; Section 3 describes the framework used for the evaluation, and Section 4 discusses our findings. Finally, Section 5 concludes with a discussion of further work.
Resumo:
Image database visualisations, in particular mapping-based visualisations, provide an interesting approach to accessing image repositories as they are able to overcome some of the drawbacks associated with retrieval based approaches. However, making a mapping-based approach work efficiently on large remote image databases, has yet to be explored. In this paper, we present Web-Based Images Browser (WBIB), a novel system that efficiently employs image pyramids to reduce bandwidth requirements so that users can interactively explore large remote image databases. © 2013 Authors.
Resumo:
Monitoring is essential for conservation of sites, but capacity to undertake it in the field is often limited. Data collected by remote sensing has been identified as a partial solution to this problem, and is becoming a feasible option, since increasing quantities of satellite data in particular are becoming available to conservationists. When suitably classified, satellite imagery can be used to delineate land cover types such as forest, and to identify any changes over time. However, the conservation community lacks (a) a simple tool appropriate to the needs for monitoring change in all types of land cover (e.g. not just forest), and (b) an easily accessible information system which allows for simple land cover change analysis and data sharing to reduce duplication of effort. To meet these needs, we developed a web-based information system which allows users to assess land cover dynamics in and around protected areas (or other sites of conservation importance) from multi-temporal medium resolution satellite imagery. The system is based around an open access toolbox that pre-processes and classifies Landsat-type imagery, and then allows users to interactively verify the classification. These data are then open for others to utilize through the online information system. We first explain imagery processing and data accessibility features, and then demonstrate the toolbox and the value of user verification using a case study on Nakuru National Park, Kenya. Monitoring and detection of disturbances can support implementation of effective protection, assist the work of park managers and conservation scientists, and thus contribute to conservation planning, priority assessment and potentially to meeting monitoring needs for Aichi target 11.
Resumo:
Product quality planning is a fundamental part of quality assurance in manufacturing. It is composed of the distribution of quality aims over each phase in product development and the deployment of quality operations and resources to accomplish these aims. This paper proposes a quality planning methodology based on risk assessment and the planning tasks of product development are translated into evaluation of risk priorities. Firstly, a comprehensive model for quality planning is developed to address the deficiencies of traditional quality function deployment (QFD) based quality planning. Secondly, a novel failure knowledge base (FKB) based method is discussed. Then a mathematical method and algorithm of risk assessment is presented for target decomposition, measure selection, and sequence optimization. Finally, the proposed methodology has been implemented in a web based prototype software system, QQ-Planning, to solve the problem of quality planning regarding the distribution of quality targets and the deployment of quality resources, in such a way that the product requirements are satisfied and the enterprise resources are highly utilized. © Springer-Verlag Berlin Heidelberg 2010.