19 resultados para weak instruments
Resumo:
A method of accurately controlling the position of a mobile robot using an external large volume metrology (LVM) instrument is presented in this article. By utilising an LVM instrument such as a laser tracker or indoor GPS (iGPS) in mobile robot navigation, many of the most difficult problems in mobile robot navigation can be simplified or avoided. Using the real-time position information from the laser tracker, a very simple navigation algorithm, and a low cost robot, 5mm repeatability was achieved over a volume of 30m radius. A surface digitisation scan of a wind turbine blade section was also demonstrated, illustrating possible applications of the method for manufacturing processes. Further, iGPS guidance of a small KUKA omni-directional robot has been demonstrated, and a full scale prototype system is being developed in cooperation with KUKA Robotics, UK. © 2011 Taylor & Francis.
Resumo:
The purpose of this article is to investigate in which ways multi-level actor cooperation advances national and local implementation processes of human rights norms in weak-state contexts. Examining the cases of women’s rights in Bosnia and Herzegovina and children’s rights in Bangladesh, we comparatively point to some advantages and disadvantages cooperative relations between international organisations, national governments and local NGOs can entail. Whereas these multi-level actor constellations (MACs) usually initiate norm implementation processes reliably and compensate governmental deficits, they are not always sustainable in the long run. If international organisations withdraw support from temporary missions or policy projects, local NGOs are not able to perpetuate implementation activities if state capacities have not been strengthened by MACs. Our aim is to highlight functions of local agency within multi-level cooperation and to critically raise sustainability issues in human rights implementation to supplement norm research in International Relations.
Resumo:
We study theoretically and numerically the dynamics of a passive optical fiber ring cavity pumped by a highly incoherent wave: an incoherently injected fiber laser. The theoretical analysis reveals that the turbulent dynamics of the cavity is dominated by the Raman effect. The forced-dissipative nature of the fiber cavity is responsible for a large diversity of turbulent behaviors: Aside from nonequilibrium statistical stationary states, we report the formation of a periodic pattern of spectral incoherent solitons, or the formation of different types of spectral singularities, e.g., dispersive shock waves and incoherent spectral collapse behaviors. We derive a mean-field kinetic equation that describes in detail the different turbulent regimes of the cavity and whose structure is formally analogous to the weak Langmuir turbulence kinetic equation in the presence of forcing and damping. A quantitative agreement is obtained between the simulations of the nonlinear Schrödinger equation with cavity boundary conditions and those of the mean-field kinetic equation and the corresponding singular integrodifferential reduction, without using adjustable parameters. We discuss the possible realization of a fiber cavity experimental setup in which the theoretical predictions can be observed and studied.
Resumo:
Measurement and verification of products and processes during the early design is attracting increasing interest from high value manufacturing industries. Measurement planning is deemed as an effective means to facilitate the integration of the metrology activity into a wider range of production processes. However, the literature reveals that there are very few research efforts in this field, especially regarding large volume metrology. This paper presents a novel approach to accomplish instruments selection, the first stage of measurement planning process, by mapping measurability characteristics between specific measurement assignments and instruments.