20 resultados para visual diagnosis
Resumo:
Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.
Resumo:
Background: Vigabatrin (VGB) is an anti-epileptic medication which has been linked to peripheral constriction of the visual field. Documenting the natural history associated with continued VGB exposure is important when making decisions about the risk and benefits associated with the treatment. Due to its speed the Swedish Interactive Threshold Algorithm (SITA) has become the algorithm of choice when carrying out Full Threshold automated static perimetry. SITA uses prior distributions of normal and glaucomatous visual field behaviour to estimate threshold sensitivity. As the abnormal model is based on glaucomatous behaviour this algorithm has not been validated for VGB recipients. We aim to assess the clinical utility of the SITA algorithm for accurately mapping VGB attributed field loss. Methods: The sample comprised one randomly selected eye of 16 patients diagnosed with epilepsy, exposed to VGB therapy. A clinical diagnosis of VGB attributed visual field loss was documented in 44% of the group. The mean age was 39.3 years∈±∈14.5 years and the mean deviation was -4.76 dB ±4.34 dB. Each patient was examined with the Full Threshold, SITA Standard and SITA Fast algorithm. Results: SITA Standard was on average approximately twice as fast (7.6 minutes) and SITA Fast approximately 3 times as fast (4.7 minutes) as examinations completed using the Full Threshold algorithm (15.8 minutes). In the clinical environment, the visual field outcome with both SITA algorithms was equivalent to visual field examination using the Full Threshold algorithm in terms of visual inspection of the grey scale plots, defect area and defect severity. Conclusions: Our research shows that both SITA algorithms are able to accurately map visual field loss attributed to VGB. As patients diagnosed with epilepsy are often vulnerable to fatigue, the time saving offered by SITA Fast means that this algorithm has a significant advantage for use with VGB recipients.
Resumo:
Purpose: Technological devices such as smartphones and tablets are widely available and increasingly used as visual aids. This study evaluated the use of a novel app for tablets (MD_evReader) developed as a reading aid for individuals with a central field loss resulting from macular degeneration. The MD_evReader app scrolls text as single lines (similar to a news ticker) and is intended to enhance reading performance using the eccentric viewing technique by both reducing the demands on the eye movement system and minimising the deleterious effects of perceptual crowding. Reading performance with scrolling text was compared with reading static sentences, also presented on a tablet computer. Methods: Twenty-six people with low vision (diagnosis of macular degeneration) read static or dynamic text (scrolled from right to left), presented as a single line at high contrast on a tablet device. Reading error rates and comprehension were recorded for both text formats, and the participant’s subjective experience of reading with the app was assessed using a simple questionnaire. Results: The average reading speed for static and dynamic text was not significantly different and equal to or greater than 85 words per minute. The comprehension scores for both text formats were also similar, equal to approximately 95% correct. However, reading error rates were significantly (p=0.02) less for dynamic text than for static text. The participants’ questionnaire ratings of their reading experience with the MD_evReader were highly positive and indicated a preference for reading with this app compared with their usual method. Conclusions: Our data show that reading performance with scrolling text is at least equal to that achieved with static text and in some respects (reading error rate) is better than static text. Bespoke apps informed by an understanding of the underlying sensorimotor processes involved in a cognitive task such as reading have excellent potential as aids for people with visual impairments.
Resumo:
Diabetes mellitus (DM) is a metabolic disorder which is characterised by hyperglycaemia resulting from defects in insulin secretion, insulin action or both. The long-term specific effects of DM include the development of retinopathy, nephropathy and neuropathy. Cardiac disease, peripheral arterial and cerebrovascular disease are also known to be linked with DM. Type 1 diabetes mellitus (T1DM) accounts for approximately 10% of all individuals with DM, and insulin therapy is the only available treatment. Type 2 diabetes mellitus (T2DM) accounts for 90% of all individuals with DM. Diet, exercise, oral hypoglycaemic agents and occasionally exogenous insulin are used to manage T2DM. The diagnosis of DM is made where the glycated haemoglobin (HbA1c) percentage is greater than 6.5%. Pattern-reversal visual evoked potential (PVEP) testing is an objective means of evaluating impulse conduction along the central nervous pathways. Increased peak time of the visual P100 waveform is an expression of structural damage at the level of myelinated optic nerve fibres. This was an observational cross sectional study. The participants were grouped into two phases. Phase 1, the control group, consisted of 30 healthy non-diabetic participants. Phase 2 comprised of 104 diabetic participants of whom 52 had an HbA1c greater than 10% (poorly controlled DM) and 52 whose HbA1c was 10% and less (moderately controlled DM). The aim of this study was to firstly observe the possible association between glycated haemoglobin levels and P100 peak time of pattern-reversal visual evoked potentials (PVEPs) in DM. Secondly, to assess whether the central nervous system (CNS) and in particular visual function is affected by type and/or duration of DM. The cut-off values to define P100 peak time delay was calculated as the mean P100 peak time plus 2.5 X standard deviations as measured for the non-diabetic control group, and were 110.64 ms for the right eye. The proportion of delayed P100 peak time amounted to 38.5% for both diabetic groups, thus the poorly controlled group (HbA1c > 10%) did not pose an increased risk for delayed P100 peak time, relative to the moderately controlled group (HbA1c ≤ 10%). The P100 PVEP results for this study, do however, reflect significant delay (p < 0.001) of the DM group as compared to the non-diabetic group; thus, subclincal neuropathy of the CNS occurs in 38.5% of cases. The duration of DM and type of DM had no influence on the P100 peak time measurements.
Resumo:
Corticobasal degeneration is a rare, progressive neurodegenerative disease and a member of the 'parkinsonian' group of disorders, which also includes Parkinson's disease, progressive supranuclear palsy, dementia with Lewy bodies and multiple system atrophy. The most common initial symptom is limb clumsiness, usually affecting one side of the body, with or without accompanying rigidity or tremor. Subsequently, the disease affects gait and there is a slow progression to influence ipsilateral arms and legs. Apraxia and dementia are the most common cortical signs. Corticobasal degeneration can be difficult to distinguish from other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid clinical diagnosis. Typical ocular features include increased latency of saccadic eye movements ipsilateral to the side exhibiting apraxia, impaired smooth pursuit movements and visuo-spatial dysfunction, especially involving spatial rather than object-based tasks. Less typical features include reduction in saccadic velocity, vertical gaze palsy, visual hallucinations, sleep disturbance and an impaired electroretinogram. Aspects of primary vision such as visual acuity and colour vision are usually unaffected. Management of the condition to deal with problems of walking, movement, daily tasks and speech problems is an important aspect of the disease.