26 resultados para vertically stacked photovoltaic thermal solar cell
Resumo:
Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CHCOOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CHCOOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend is observed for the model compound, chlorogenic acid. The addition of potassium does not produce a dramatic change in the tar product distribution, although its addition to chlorogenic acid promoted the generation of cyclohexane and phenol derivatives. Postulated thermal decomposition schemes for chlorogenic acid are presented. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Desalination of groundwater is essential in many arid areas that are far from both seawater and fresh water resources. The ideal groundwater desalination system should operate using a sustainable energy source and provide high water output per land area and cost. To avoid discharging voluminous brine, it should also provide high recovery. To achieve these aims, we have designed DesaLink, a novel approach to linking the solar Rankine cycle to reverse osmosis (RO). To achieve high recovery without the need for multiple RO stages, DesaLink adopts a batch mode of operation. It is suited to use with a variety of solar thermal collectors including linear Fresnel reflectors (LFR). For example, using a LFR occupying 1,000m of land and providing steam at 200°C and 15.5 bar, DesaLink is predicted to provide 350m of fresh water per day at a recovery ratio of 0.7, when fed with brackish groundwater containing 5,000ppm of sodium chloride. Here, we report preliminary experiments to assess the feasibility of the concept. We study the effects of longitudinal dispersion, concentration polarisation and describe a pilot experiment to demonstrate the batch process using a materials testing machine. In addition, we demonstrate a prototype of DesaLink running from compressed air to simulate steam.
Resumo:
Purpose: Energy security is a major concern for India and many rural areas remain un-electrified. Thus, innovations in sustainable technologies to provide energy services are required. Biomass and solar energy in particular are resources that are widely available and underutilised in India. This paper aims to provide an overview of a methodology that was developed for designing and assessing the feasibility of a hybrid solar-biomass power plant in Gujarat. Design/methodology/approach: The methodology described is a combination of engineering and business management studies used to evaluate and design solar thermal collectors for specific applications and locations. For the scenario of a hybrid plant, the methodology involved: the analytical hierarchy process, for solar thermal technology selection; a cost-exergy approach, for design optimisation; quality function deployment, for designing and evaluating a novel collector - termed the elevation linear Fresnel reflector (ELFR); and case study simulations, for analysing alternative hybrid plant configurations. Findings: The paper recommended that for a hybrid plant in Gujarat, a linear Fresnel reflector of 14,000 m2 aperture is integrated with a 3 tonne per hour biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR can increase savings of biomass (100 t/a) and land (9 ha/a). Research limitations/implications: The research reviewed in this paper is primarily theoretical and further work will need to be undertaken to specify plant details such as piping layout, pump sizing and structure, and assess plant performance during real operational conditions. Originality/value: The paper considers the methodology adopted proved to be a powerful tool for integrating technology selection, optimisation, design and evaluation and promotes interdisciplinary methods for improving sustainable engineering design and energy management. © Emerald Group Publishing Limited.
Resumo:
The article analyzes the contribution of stochastic thermal fluctuations in the attachment times of the immature T-cell receptor TCR: peptide-major-histocompatibility-complex pMHC immunological synapse bond. The key question addressed here is the following: how does a synapse bond remain stabilized in the presence of high-frequency thermal noise that potentially equates to a strong detaching force? Focusing on the average time persistence of an immature synapse, we show that the high-frequency nodes accompanying large fluctuations are counterbalanced by low-frequency nodes that evolve over longer time periods, eventually leading to signaling of the immunological synapse bond primarily decided by nodes of the latter type. Our analysis shows that such a counterintuitive behavior could be easily explained from the fact that the survival probability distribution is governed by two distinct phases, corresponding to two separate time exponents, for the two different time regimes. The relatively shorter timescales correspond to the cohesion:adhesion induced immature bond formation whereas the larger time reciprocates the association:dissociation regime leading to TCR:pMHC signaling. From an estimate of the bond survival probability, we show that, at shorter timescales, this probability PΔ(τ) scales with time τ as a universal function of a rescaled noise amplitude DΔ2, such that PΔ(τ)∼τ-(ΔD+12),Δ being the distance from the mean intermembrane (T cell:Antigen Presenting Cell) separation distance. The crossover from this shorter to a longer time regime leads to a universality in the dynamics, at which point the survival probability shows a different power-law scaling compared to the one at shorter timescales. In biological terms, such a crossover indicates that the TCR:pMHC bond has a survival probability with a slower decay rate than the longer LFA-1:ICAM-1 bond justifying its stability.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
Solar energy is the most abundant, widely distributed and clean renewable energy resource. Since the insolation intensity is only in the range of 0.5 - 1.0 kW/m2, solar concentrators are required for attaining temperatures appropriate for medium and high temperature applications. The concentrated energy is transferred through an absorber to a thermal fluid such as air, water or other fluids for various uses. This paper describes design and development of a 'Linear Fresnel Mirror Solar Concentrator' (LFMSC) using long thin strips of mirrors to focus sunlight on to a fixed receiver located at a common focal line. Our LFMSC system comprises a reflector (concentrator), receiver (target) and an innovative solar tracking mechanism. Reflectors are mirror strips, mounted on tubes which are fixed to a base frame. The tubes can be rotated to align the strips to focus solar radiation on the receiver (target). The latter comprises a coated tube carrying water and covered by a glass plate. This is mounted at an elevation of few meters above the horizontal, parallel to the plane of the mirrors. The reflector is oriented along north-south axis. The most difficult task is tracking. This is achieved by single axis tracking using a four bar link mechanism. Thus tracking has been made simple and easy to operate. The LFMSC setup is used for generating steam for a variety of applications. © 2013 The Authors. Published by Elsevier Ltd.
Resumo:
Liquid desiccant cooling systems (LDCS) are energy efficient means of providing cooling, especially when powered by low-grade thermal sources. In this paper, the underlying principles of operation of desiccant cooling systems are examined, and the main components (dehumidifier, evaporative cooler and regenerator) of the LDCS are reviewed. The evaporative cooler can take the form of direct, indirect or semi-indirect. Relative to the direct type, the indirect type is generally less effective. Nonetheless, a certain variant of the indirect type - namely dew-point evaporative cooler - is found to be the most effective amongst all. The dehumidifier and the regenerator can be of the same type of equipment: packed tower and falling film are popular choices, especially when fitted with an internal heat exchanger. The energy requirement of the regenerator can be supplied from solar thermal collectors, of which a solar pond is an interesting option especially when a large scale or storage capability is desired.
Resumo:
The utilization of solar energy by photovoltaic (PV) systems have received much research and development (R&D) attention across the globe. In the past decades, a large number of PV array have been installed. Since the installed PV arrays often operate in harsh environments, non-uniform aging can occur and impact adversely on the performance of PV systems, especially in the middle and late periods of their service life. Due to the high cost of replacing aged PV modules by new modules, it is appealing to improve energy efficiency of aged PV systems. For this purpose, this paper presents a PV module reconfiguration strategy to achieve the maximum power generation from non-uniformly aged PV arrays without significant investment. The proposed reconfiguration strategy is based on the cell-unit structure of PV modules, the operating voltage limit of gird-connected converter, and the resulted bucket-effect of the maximum short circuit current. The objectives are to analyze all the potential reorganization options of the PV modules, find the maximum power point and express it in a proposition. This proposition is further developed into a novel implementable algorithm to calculate the maximum power generation and the corresponding reconfiguration of the PV modules. The immediate benefits from this reconfiguration are the increased total power output and maximum power point voltage information for global maximum power point tracking (MPPT). A PV array simulation model is used to illustrate the proposed method under three different cases. Furthermore, an experimental rig is built to verify the effectiveness of the proposed method. The proposed method will open an effective approach for condition-based maintenance of emerging aging PV arrays.
Resumo:
Electric vehicles (EVs) provide a feasible solution to reducing greenhouse gas emissions and thus become a hot topic for research and development. Switched reluctance motors (SRMs) are one of promised motors for EV applications. In order to extend the EVs’ driving miles, the use of photovoltaic (PV) panels on the vehicle helps decrease the reliance on vehicle batteries. Based on phase winding characteristics of SRMs, a tri-port converter is proposed in this paper to control the energy flow between the PV panel, battery and SRM. Six operating modes are presented, four of which are developed for driving and two for standstill on-board charging. In the driving modes, the energy decoupling control for maximum power point tracking (MPPT) of the PV panel and speed control of the SRM are realized. In the standstill charging modes, a grid-connected charging topology is developed without a need for external hardware. When the PV panel directly charges the battery, a multi-section charging control strategy is used to optimize energy utilization. Simulation results based on Matlab/Simulink and experiments prove the effectiveness of the proposed tri-port converter, which has potential economic implications to improve the market acceptance of EVs.
Resumo:
The quest for renewable energy sources has led to growing attention in the research of organic photovoltaics (OPVs), as a promising alternative to fossil fuels, since these devices have low manufacturing costs and attractive end-user qualities, such as ease of installation and maintenance. Wide application of OPVs is majorly limited by the devices lifetime. With the development of new encapsulation materials, some degradation factors, such as water and oxygen ingress, can almost be excluded, whereas the thermal degradation of the devices remains a major issue. Two aspects have to be addressed to solve the problem of thermal instability: bulk effects in the photoactive layer and interfacial effects at the photoactive layer/charge-transporting layers. In this work, the interface between photoactive layer and electron-transporting zinc oxide (ZnO) in devices with inverted architecture was engineered by introducing polymeric interlayers, based on zinc-binding ligands, such as 3,4-dihydroxybenzene and 8-hydroxyquinoline. Also, a cross-linkable layer of poly(3,4-dimethoxystyrene) and its fullerene derivative were studied. At first, controlled reversible addition-fragmentation chain transfer (RAFT) polymerisation was employed to achieve well-defined polymers in a range of molar masses, all bearing a chain-end functionality for further modifications. Resulting polymers have been fully characterised, including their thermal and optical properties, and introduced as interlayers to study their effect on the initial device performance and thermal stability. Poly(3,4-dihydroxystyrene) and its fullerene derivative were found unsuitable for application in devices as they increased the work function of ZnO and created a barrier for electron extraction. On the other hand, their parental polymer, poly(3,4-dimethoxystyrene), and its fullerene derivative, upon cross-linking, resulted in enhanced efficiency and stability of devices, if compared to control. Polymers based on 8-hydroxyquinoline ligand had a negative effect on the initial stability of the devices, but increased the lifetime of the cells under accelerated thermal stress. Comprehensive studies of the key mechanisms, determining efficiency, such as charge generation and extraction, were performed by using time-resolved electrical and spectroscopic techniques, in order to understand in detail the effect of the interlayers on the device performance. Obtained results allow deeper insight into mechanisms of degradation that limit the lifetime of devices and prompt the design of better materials for the interface stabilisation.
Resumo:
This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array.