23 resultados para user-centered approach
Resumo:
Term dependence is a natural consequence of language use. Its successful representation has been a long standing goal for Information Retrieval research. We present a methodology for the construction of a concept hierarchy that takes into account the three basic dimensions of term dependence. We also introduce a document evaluation function that allows the use of the concept hierarchy as a user profile for Information Filtering. Initial experimental results indicate that this is a promising approach for incorporating term dependence in the way documents are filtered.
Resumo:
Clinical Decision Support Systems (CDSSs) need to disseminate expertise in formats that suit different end users and with functionality tuned to the context of assessment. This paper reports research into a method for designing and implementing knowledge structures that facilitate the required flexibility. A psychological model of expertise is represented using a series of formally specified and linked XML trees that capture increasing elements of the model, starting with hierarchical structuring, incorporating reasoning with uncertainty, and ending with delivering the final CDSS. The method was applied to the Galatean Risk and Safety Tool, GRiST, which is a web-based clinical decision support system (www.egrist.org) for assessing mental-health risks. Results of its clinical implementation demonstrate that the method can produce a system that is able to deliver expertise targetted and formatted for specific patient groups, different clinical disciplines, and alternative assessment settings. The approach may be useful for developing other real-world systems using human expertise and is currently being applied to a logistics domain. © 2013 Polish Information Processing Society.
Resumo:
The Teallach project has adapted model-based user-interface development techniques to the systematic creation of user-interfaces for object-oriented database applications. Model-based approaches aim to provide designers with a more principled approach to user-interface development using a variety of underlying models, and tools which manipulate these models. Here we present the results of the Teallach project, describing the tools developed and the flexible design method supported. Distinctive features of the Teallach system include provision of database-specific constructs, comprehensive facilities for relating the different models, and support for a flexible design method in which models can be constructed and related by designers in different orders and in different ways, to suit their particular design rationales. The system then creates the desired user-interface as an independent, fully functional Java application, with automatically generated help facilities.
Resumo:
As microblog services such as Twitter become a fast and convenient communication approach, identification of trendy topics in microblog services has great academic and business value. However detecting trendy topics is very challenging due to huge number of users and short-text posts in microblog diffusion networks. In this paper we introduce a trendy topics detection system under computation and communication resource constraints. In stark contrast to retrieving and processing the whole microblog contents, we develop an idea of selecting a small set of microblog users and processing their posts to achieve an overall acceptable trendy topic coverage, without exceeding resource budget for detection. We formulate the selection operation of these subset users as mixed-integer optimization problems, and develop heuristic algorithms to compute their approximate solutions. The proposed system is evaluated with real-time test data retrieved from Sina Weibo, the dominant microblog service provider in China. It's shown that by monitoring 500 out of 1.6 million microblog users and tracking their microposts (about 15,000 daily) with our system, nearly 65% trendy topics can be detected, while on average 5 hours earlier before they appear in Sina Weibo official trends.
Resumo:
Defining 'effectiveness' in the context of community mental health teams (CMHTs) has become increasingly difficult under the current pattern of provision required in National Health Service mental health services in England. The aim of this study was to establish the characteristics of multi-professional team working effectiveness in adult CMHTs to develop a new measure of CMHT effectiveness. The study was conducted between May and November 2010 and comprised two stages. Stage 1 used a formative evaluative approach based on the Productivity Measurement and Enhancement System to develop the scale with multiple stakeholder groups over a series of qualitative workshops held in various locations across England. Stage 2 analysed responses from a cross-sectional survey of 1500 members in 135 CMHTs from 11 Mental Health Trusts in England to determine the scale's psychometric properties. Based on an analysis of its structural validity and reliability, the resultant 20-item scale demonstrated good psychometric properties and captured one overall latent factor of CMHT effectiveness comprising seven dimensions: improved service user well-being, creative problem-solving, continuous care, inter-team working, respect between professionals, engagement with carers and therapeutic relationships with service users. The scale will be of significant value to CMHTs and healthcare commissioners both nationally and internationally for monitoring, evaluating and improving team functioning in practice.
Resumo:
This thesis describes the design and development of an eye alignment/tracking system which allows self alignment of the eye’s optical axis with a measurement axis. Eye alignment is an area of research largely over-looked, yet it is a fundamental requirement in the acquisition of clinical data from the eye. New trends in the ophthalmic market, desiring portable hand-held apparatus, and the application of ophthalmic measurements in areas other than vision care have brought eye alignment under new scrutiny. Ophthalmic measurements taken in hand-held devices with out an clinician present requires alignment in an entirely new set of circumstances, requiring a novel solution. In order to solve this problem, the research has drawn upon eye tracking technology to monitor the eye, and a principle of self alignment to perform alignment correction. A handheld device naturally lends itself to the patient performing alignment, thus a technique has been designed to communicate raw eye tracking data to the user in a manner which allows the user to make the necessary corrections. The proposed technique is a novel methodology in which misalignment to the eye’s optical axis can be quantified, corrected and evaluated. The technique uses Purkinje Image tracking to monitor the eye’s movement as well as the orientation of the optical axis. The use of two sets of Purkinje Images allows quantification of the eye’s physical parameters needed for accurate Purkinje Image tracking, negating the need for prior anatomical data. An instrument employing the methodology was subsequently prototyped and validated, allowing a sample group to achieve self alignment of their optical axis with an imaging axis within 16.5-40.8 s, and with a rotational precision of 0.03-0.043°(95% confidence intervals). By encompassing all these factors the technique facilitates self alignment from an unaligned position on the visual axis to an aligned position on the optical axis. The consequence of this is that ophthalmic measurements, specifically pachymetric measurements, can be made in the absence of an optician, allowing the use of ophthalmic instrumentation and measurements in health professions other than vision care.
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.
Resumo:
Improved clinical care for Bipolar Disorder (BD) relies on the identification of diagnostic markers that can reliably detect disease-related signals in clinically heterogeneous populations. At the very least, diagnostic markers should be able to differentiate patients with BD from healthy individuals and from individuals at familial risk for BD who either remain well or develop other psychopathology, most commonly Major Depressive Disorder (MDD). These issues are particularly pertinent to the development of translational applications of neuroimaging as they represent challenges for which clinical observation alone is insufficient. We therefore applied pattern classification to task-based functional magnetic resonance imaging (fMRI) data of the n-back working memory task, to test their predictive value in differentiating patients with BD (n=30) from healthy individuals (n=30) and from patients' relatives who were either diagnosed with MDD (n=30) or were free of any personal lifetime history of psychopathology (n=30). Diagnostic stability in these groups was confirmed with 4-year prospective follow-up. Task-based activation patterns from the fMRI data were analyzed with Gaussian Process Classifiers (GPC), a machine learning approach to detecting multivariate patterns in neuroimaging datasets. Consistent significant classification results were only obtained using data from the 3-back versus 0-back contrast. Using contrast, patients with BD were correctly classified compared to unrelated healthy individuals with an accuracy of 83.5%, sensitivity of 84.6% and specificity of 92.3%. Classification accuracy, sensitivity and specificity when comparing patients with BD to their relatives with MDD, were respectively 73.1%, 53.9% and 94.5%. Classification accuracy, sensitivity and specificity when comparing patients with BD to their healthy relatives were respectively 81.8%, 72.7% and 90.9%. We show that significant individual classification can be achieved using whole brain pattern analysis of task-based working memory fMRI data. The high accuracy and specificity achieved by all three classifiers suggest that multivariate pattern recognition analyses can aid clinicians in the clinical care of BD in situations of true clinical uncertainty regarding the diagnosis and prognosis.