45 resultados para user data
Resumo:
This thesis describes research on End-User Computing (EUC) in small business in an environment where no Information System (IS) support and expertise are available. The research aims to identify the factors that contribute to EUC Sophistication and understand the extent small firms are capable of developing their own applications. The intention is to assist small firms to adopt EUC, encourage better utilisation of their IT resources and gain the benefits associated with computerisation. The factors examined are derived inductively from previous studies where a model is developed to map these factors with the degree of sophistication associated with IT and EUC. This study attempts to combine the predictive power of quantitative research through surveys with the explanatory power of qualitative research through action-oriented case study. Following critical examination of the literature, a survey of IT Adoption and EUC was conducted. Instruments were then developed to measure EUC and IT Sophistication indexes based on sophistication constructs adapted from previous studies using data from the survey. This is followed by an in-depth action case study involving two small firms to investigate the EUC phenomenon in its real life context. The accumulated findings from these mixed research strategies are used to form the final model of EUC Sophistication in small business. Results of the study suggest both EUC Sophistication and the Presence of EUC in small business are affected by Management Support and Behaviour towards EUC. Additionally EUC Sophistication is also affected by the presence of an EUC Champion. Results are also consistent with respect to the independence between IT Sophistication and EUC Sophistication. The main research contributions include an accumulated knowledge of EUC in small business, the Model of EUC Sophistication, an instrument to measure EUC Sophistication Index for small firms, and a contribution to research methods in IS.
Resumo:
This research investigates the general user interface problems in using networked services. Some of the problems are: users have to recall machine names and procedures to. invoke networked services; interactions with some of the services are by means of menu-based interfaces which are quite cumbersome to use; inconsistencies exist between the interfaces for different services because they were developed independently. These problems have to be removed so that users can use the services effectively. A prototype system has been developed to help users interact with networked services. This consists of software which gives the user an easy and consistent interface with the various services. The prototype is based on a graphical user interface and it includes the following appJications: Bath Information & Data Services; electronic mail; file editor. The prototype incorporates an online help facility to assist users using the system. The prototype can be divided into two parts: the user interface part that manages interactlon with the user; the communicatIon part that enables the communication with networked services to take place. The implementation is carried out using an object-oriented approach where both the user interface part and communication part are objects. The essential characteristics of object-orientation, - abstraction, encapsulation, inheritance and polymorphism - can all contribute to the better design and implementation of the prototype. The Smalltalk Model-View-Controller (MVC) methodology has been the framework for the construction of the prototype user interface. The purpose of the development was to study the effectiveness of users interaction to networked services. Having completed the prototype, tests users were requested to use the system to evaluate its effectiveness. The evaluation of the prototype is based on observation, i.e. observing the way users use the system and the opinion rating given by the users. Recommendations to improve further the prototype are given based on the results of the evaluation. based on the results of the evah:1ation. . .'. " "', ':::' ,n,<~;'.'
Resumo:
The aims of the project were twofold: 1) To investigate classification procedures for remotely sensed digital data, in order to develop modifications to existing algorithms and propose novel classification procedures; and 2) To investigate and develop algorithms for contextual enhancement of classified imagery in order to increase classification accuracy. The following classifiers were examined: box, decision tree, minimum distance, maximum likelihood. In addition to these the following algorithms were developed during the course of the research: deviant distance, look up table and an automated decision tree classifier using expert systems technology. Clustering techniques for unsupervised classification were also investigated. Contextual enhancements investigated were: mode filters, small area replacement and Wharton's CONAN algorithm. Additionally methods for noise and edge based declassification and contextual reclassification, non-probabilitic relaxation and relaxation based on Markov chain theory were developed. The advantages of per-field classifiers and Geographical Information Systems were investigated. The conclusions presented suggest suitable combinations of classifier and contextual enhancement, given user accuracy requirements and time constraints. These were then tested for validity using a different data set. A brief examination of the utility of the recommended contextual algorithms for reducing the effects of data noise was also carried out.
Resumo:
The present scarcity of operational knowledge-based systems (KBS) has been attributed, in part, to an inadequate consideration shown to user interface design during development. From a human factors perspective the problem has stemmed from an overall lack of user-centred design principles. Consequently the integration of human factors principles and techniques is seen as a necessary and important precursor to ensuring the implementation of KBS which are useful to, and usable by, the end-users for whom they are intended. Focussing upon KBS work taking place within commercial and industrial environments, this research set out to assess both the extent to which human factors support was presently being utilised within development, and the future path for human factors integration. The assessment consisted of interviews conducted with a number of commercial and industrial organisations involved in KBS development; and a set of three detailed case studies of individual KBS projects. Two of the studies were carried out within a collaborative Alvey project, involving the Interdisciplinary Higher Degrees Scheme (IHD) at the University of Aston in Birmingham, BIS Applied Systems Ltd (BIS), and the British Steel Corporation. This project, which had provided the initial basis and funding for the research, was concerned with the application of KBS to the design of commercial data processing (DP) systems. The third study stemmed from involvement on a KBS project being carried out by the Technology Division of the Trustees Saving Bank Group plc. The preliminary research highlighted poor human factors integration. In particular, there was a lack of early consideration of end-user requirements definition and user-centred evaluation. Instead concentration was given to the construction of the knowledge base and prototype evaluation with the expert(s). In response to this identified problem, a set of methods was developed that was aimed at encouraging developers to consider user interface requirements early on in a project. These methods were then applied in the two further projects, and their uptake within the overall development process was monitored. Experience from the two studies demonstrated that early consideration of user interface requirements was both feasible, and instructive for guiding future development work. In particular, it was shown a user interface prototype could be used as a basis for capturing requirements at the functional (task) level, and at the interface dialogue level. Extrapolating from this experience, a KBS life-cycle model is proposed which incorporates user interface design (and within that, user evaluation) as a largely parallel, rather than subsequent, activity to knowledge base construction. Further to this, there is a discussion of several key elements which can be seen as inhibiting the integration of human factors within KBS development. These elements stem from characteristics of present KBS development practice; from constraints within the commercial and industrial development environments; and from the state of existing human factors support.
Resumo:
Recent advances in technology have produced a significant increase in the availability of free sensor data over the Internet. With affordable weather monitoring stations now available to individual meteorology enthusiasts a reservoir of real time data such as temperature, rainfall and wind speed can now be obtained for most of the United States and Europe. Despite the abundance of available data, obtaining useable information about the weather in your local neighbourhood requires complex processing that poses several challenges. This paper discusses a collection of technologies and applications that harvest, refine and process this data, culminating in information that has been tailored toward the user. In this case we are particularly interested in allowing a user to make direct queries about the weather at any location, even when this is not directly instrumented, using interpolation methods. We also consider how the uncertainty that the interpolation introduces can then be communicated to the user of the system, using UncertML, a developing standard for uncertainty representation.
Resumo:
We analyze a Big Data set of geo-tagged tweets for a year (Oct. 2013–Oct. 2014) to understand the regional linguistic variation in the U.S. Prior work on regional linguistic variations usually took a long time to collect data and focused on either rural or urban areas. Geo-tagged Twitter data offers an unprecedented database with rich linguistic representation of fine spatiotemporal resolution and continuity. From the one-year Twitter corpus, we extract lexical characteristics for twitter users by summarizing the frequencies of a set of lexical alternations that each user has used. We spatially aggregate and smooth each lexical characteristic to derive county-based linguistic variables, from which orthogonal dimensions are extracted using the principal component analysis (PCA). Finally a regionalization method is used to discover hierarchical dialect regions using the PCA components. The regionalization results reveal interesting linguistic regional variations in the U.S. The discovered regions not only confirm past research findings in the literature but also provide new insights and a more detailed understanding of very recent linguistic patterns in the U.S.
Resumo:
Indicators which summarise the characteristics of spatiotemporal data coverages significantly simplify quality evaluation, decision making and justification processes by providing a number of quality cues that are easy to manage and avoiding information overflow. Criteria which are commonly prioritised in evaluating spatial data quality and assessing a dataset’s fitness for use include lineage, completeness, logical consistency, positional accuracy, temporal and attribute accuracy. However, user requirements may go far beyond these broadlyaccepted spatial quality metrics, to incorporate specific and complex factors which are less easily measured. This paper discusses the results of a study of high level user requirements in geospatial data selection and data quality evaluation. It reports on the geospatial data quality indicators which were identified as user priorities, and which can potentially be standardised to enable intercomparison of datasets against user requirements. We briefly describe the implications for tools and standards to support the communication and intercomparison of data quality, and the ways in which these can contribute to the generation of a GEO label.
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to incorporate speech-based input within mobile data collection applications. In our previous work [1], we evaluated the ability of a single speech recognition engine to support accurate, mobile, speech-based data input. Here, we build on our previous research to compare the achievable speaker-independent accuracy rates of a variety of speech recognition engines; we also consider the relative effectiveness of different speech recognition engine and microphone pairings in terms of their ability to support accurate text entry under realistic mobile conditions of use. Our intent is to provide some initial empirical data derived from mobile, user-based evaluations to support technological decisions faced by developers of mobile applications that would benefit from, or require, speech-based data entry facilities.
Resumo:
Data quality is a difficult notion to define precisely, and different communities have different views and understandings of the subject. This causes confusion, a lack of harmonization of data across communities and omission of vital quality information. For some existing data infrastructures, data quality standards cannot address the problem adequately and cannot full all user needs or cover all concepts of data quality. In this paper we discuss some philosophical issues on data quality. We identify actual user needs on data quality, review existing standards and specification on data quality, and propose an integrated model for data quality in the eld of Earth observation. We also propose a practical mechanism for applying the integrated quality information model to large number of datasets through metadata inheritance. While our data quality management approach is in the domain of Earth observation, we believe the ideas and methodologies for data quality management can be applied to wider domains and disciplines to facilitate quality-enabled scientific research.
Resumo:
This thesis makes a contribution to the Change Data Capture (CDC) field by providing an empirical evaluation on the performance of CDC architectures in the context of realtime data warehousing. CDC is a mechanism for providing data warehouse architectures with fresh data from Online Transaction Processing (OLTP) databases. There are two types of CDC architectures, pull architectures and push architectures. There is exiguous data on the performance of CDC architectures in a real-time environment. Performance data is required to determine the real-time viability of the two architectures. We propose that push CDC architectures are optimal for real-time CDC. However, push CDC architectures are seldom implemented because they are highly intrusive towards existing systems and arduous to maintain. As part of our contribution, we pragmatically develop a service based push CDC solution, which addresses the issues of intrusiveness and maintainability. Our solution uses Data Access Services (DAS) to decouple CDC logic from the applications. A requirement for the DAS is to place minimal overhead on a transaction in an OLTP environment. We synthesize DAS literature and pragmatically develop DAS that eciently execute transactions in an OLTP environment. Essentially we develop effeicient RESTful DAS, which expose Transactions As A Resource (TAAR). We evaluate the TAAR solution and three pull CDC mechanisms in a real-time environment, using the industry recognised TPC-C benchmark. The optimal CDC mechanism in a real-time environment, will capture change data with minimal latency and will have a negligible affect on the database's transactional throughput. Capture latency is the time it takes a CDC mechanism to capture a data change that has been applied to an OLTP database. A standard definition for capture latency and how to measure it does not exist in the field. We create this definition and extend the TPC-C benchmark to make the capture latency measurement. The results from our evaluation show that pull CDC is capable of real-time CDC at low levels of user concurrency. However, as the level of user concurrency scales upwards, pull CDC has a significant impact on the database's transaction rate, which affirms the theory that pull CDC architectures are not viable in a real-time architecture. TAAR CDC on the other hand is capable of real-time CDC, and places a minimal overhead on the transaction rate, although this performance is at the expense of CPU resources.
Resumo:
This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.
Resumo:
Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to incorporate speech-based input within mobile data collection applications. In our previous work [1], we evaluated the ability of a single speech recognition engine to support accurate, mobile, speech-based data input. Here, we build on our previous research to compare the achievable speaker-independent accuracy rates of a variety of speech recognition engines; we also consider the relative effectiveness of different speech recognition engine and microphone pairings in terms of their ability to support accurate text entry under realistic mobile conditions of use. Our intent is to provide some initial empirical data derived from mobile, user-based evaluations to support technological decisions faced by developers of mobile applications that would benefit from, or require, speech-based data entry facilities.