68 resultados para uncorrected refractive error


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: This work investigates how short-term changes in blood glucose concentration affect the refractive components of the diabetic eye in patients with long-term Type 1 and Type 2 diabetes. Methods: Blood glucose concentration, refractive error components (mean spherical equivalent MSE, J0, J45), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness (LT), axial length (AL) and ocular aberrations were monitored at two-hourly intervals over a 12-hour period in: 20 T1DM patients (mean age ± SD) 38±14 years, baseline HbA1c 8.6±1.9%; 21 T2DM patients (mean age ± SD) 56±11 years, HbA1c 7.5±1.8%; and in 20 control subjects (mean age ± SD) 49±23 years, HbA1c 5.5±0.5%. The refractive and biometric results were compared with the corresponding changes in blood glucose concentration. Results: Blood glucose concentration at different times was found to vary significantly within (p<0.0005) and between groups (p<0.0005). However, the refractive error components and ocular aberrations were not found to alter significantly over the day in either the diabetic patients or the control subjects (p>0.05). Minor changes of marginal statistical or optical significance were observed in some biometric parameters. Similarly there were some marginally significant differences between the baseline biometric parameters of well-controlled and poorly-controlled diabetic subjects. Conclusion: This work suggests that normal, short-term fluctuations (of up to about 6 mM/l on a timescale of a few hours) in the blood glucose levels of diabetics are not usually associated with acute changes in refractive error or ocular wavefront aberrations. It is therefore possible that factors other than refractive error fluctuations are sometimes responsible for the transient visual problems often reported by diabetic patients. © 2012 Huntjens et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose. A clinical evaluation of the Shin-Nippon NVision-K 5001 (also branded as the Grand Seiko WR-5100K) autorefractor (Japan) was performed to examine validity and repeatability compared with subjective refraction and Javal-Schiotz keratometry. Methods. Measurements of refractive error were performed on 198 eyes of 99 subjects (aged 23.2 ± 7.4 years) subjectively (noncycloplegic) by one masked optometrist and objectively with the NVision-K autorefractor by a second optometrist. Keratometry measurements using the NVision-K were compared with the Javal-Schiotz keratometer. Intrasession repeatability of the NVision-K was also assessed on all 99 subjects together with intersession repeatability on a separate occasion separated by 7 to 14 days. Results. Refractive error as measured by the NVision-K was found to be similar (p = 0.67) to subjective refraction (difference, 0.14 ± 0.35 D). It was both accurate and repeatable over a wide prescription range (-8.25 to +7.25 D). Keratometry as measured by the NVision-K was found to be similar (p > 0.50) to the Javal-Schiotz technique in both the horizontal and vertical meridians (horizontal: difference, 0.02 ± 0.09 mm; vertical: difference, 0.01 ± 0.14 mm). There was minimal bias, and the results were repeatable (horizontal: intersession difference, 0.00 ± 0.09 mm; vertical: intersession difference, -0.01 ± 0.12 mm). Conclusion. The open-view arrangement of the Shin-Nippon NVision-K 5001 facilitates the measurement of static refractive error and the accommodative response to real-world stimuli. Coupled with its accuracy, repeatability, and capability to measure corneal curvature, it is a valuable addition to objective instrumentation currently available to the optometrist and researcher.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To describe the methodology, sampling strategy and preliminary results for the Aston Eye Study (AES), a cross-sectional study to determine the prevalence of refractive error and its associated ocular biometry in a large multi-racial sample of school children from the metropolitan area of Birmingham, England. Methods: A target sample of 1700 children aged 6–7 years and 1200 aged 12–13 years is being selected from Birmingham schools selected randomly with stratification by area deprivation index (a measure of socio-economic status). Schools with pupils predominantly (>70%) from a single race are excluded. Sample size calculations account for the likely participation rate and the clustering of individuals within schools. Procedures involve standardised protocols to allow for comparison with international population-based data. Visual acuity, non-contact ocular biometry (axial length, corneal radius of curvature and anterior chamber depth) and cycloplegic autorefraction are measured in both eyes. Distance and near oculomotor balance, height and weight are also assessed. Questionnaires for parents and older children will allow the influence of environmental factors on refractive error to be examined. Results: Recruitment and data collection are ongoing (currently N = 655). Preliminary cross-sectional data on 213 South Asian, 44 black African Caribbean and 70 white European children aged 6–7 years and 114 South Asian, 40 black African Caribbean and 115 white European children aged 12–13 years found myopia prevalence of 9.4% and 29.4% for the two age groups respectively. A more negative mean spherical equivalent refraction (SER) was observed in older children (-0.21 D vs +0.87 D). Ethnic differences in myopia prevalence are emerging with South Asian children having higher levels than white European children 36.8% vs 18.6% (for the older children). Axial length, corneal radius of curvature and anterior chamber depth were normally distributed, while SER was leptokurtic (p < 0.001) with a slight negative skew. Conclusions: The AES will allow ethnic differences in the ocular characteristics of children from a large metropolitan area of the UK to be examined. The findings to date indicate the emergence of higher levels of myopia by early adolescence in second and third generation British South Asians, compared to white European children. The continuation of the AES will allow the early determinants of these ethnic differences to be studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Presbyopia is an age-related eye condition where one of the signs is the reduction in the amplitude of accommodation, resulting in the loss of ability to change the eye's focus from far to near. It is the most common age-related ailments affecting everyone around their mid-40s. Methods for the correction of presbyopia include contact lens and spectacle options but the surgical correction of presbyopia still remains a significant challenge for refractive surgeons. Surgical strategies for dealing with presbyopia may be extraocular (corneal or scleral) or intraocular (removal and replacement of the crystalline lens or some type of treatment on the crystalline lens itself). There are however a number of limitations and considerations that have limited the widespread acceptance of surgical correction of presbyopia. Each surgical strategy presents its own unique set of advantages and disadvantages. For example, lens removal and replacement with an intraocular lens may not be preferable in a young patient with presbyopia without a refractive error. Similarly treatment on the crystalline lens may not be a suitable choice for a patient with early signs of cataract. This article is a review of the options available and those that are in development stages and are likely to be available in the near future for the surgical correction of presbyopia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. To evaluate the haemodynamic features of young healthy myopes and emmetropes, in order to ascertain the perfusion profile of human myopia and its relationship with axial length prior to reaching a degenerative state. Methods The retrobulbar, microretinal and pulsatile ocular blood flow (POBF) of one eye of each of twenty-two high myopes (N=22, mean spherical equivalent (MSE) =-5.00D), low myopes (N=22, MSE-1.00 to-4.50D) and emmetropes (N=22, MSE±0.50D) was analyzed using color Doppler Imaging, Heidelberg retinal flowmetry and ocular blood flow analyser (OBF) respectively. Intraocular pressure, axial length (AL), systemic blood pressure, and body mass index were measured. Results. When compared to the emmetropes and low myopes, the AL was greater in high myopia (p<0.0001). High myopes showed higher central retinal artery resistance index (CRA RI) (p=0.004), higher peak systolic to end diastolic velocities ratio (CRA ratio) and lower end diastolic velocity (CRA EDv) compared to low myopes (p=0.014, p=0.037). Compared to emmetropes, high myopes showed lower OBFamplitude (OBFa) (p=0.016). The POBF correlated significantly with the systolic and diastolic blood velocities of the CRA (p=0.016, p=0.036). MSE and AL correlated negatively with OBFa (p=0.03, p=0.003), OBF volume (p=0.02, p<0.001), POBF (p=0.01, p<0.001) and positively with CRA RI (p=0.007, p=0.05). Conclusion. High myopes exhibited significantly reduced pulse amplitude and CRA blood velocity, the first of which may be due to an OBF measurement artefact or real decreased ocular blood flow pulsatility. Axial length and refractive error correlated moderately with the ocular pulse and with the resistance index of the CRA, which in turn correlated amongst themselves. It is hypothesized that the compromised pulsatile and CRA haemodynamics observed in young healthy myopes is an early feature of the decrease in ocular blood flow reported in pathological myopia. Such vascular features would increase the susceptibility for vascular and age-related eye diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To assess the accuracy of three wavefront analyzers versus a validated binocular open-view autorefractor in determining refractive error in non-cycloplegic eyes. METHODS: Eighty eyes were examined using the SRW-5000 open-view infrared autorefractor and, in randomized sequence, three wavefront analyzers: 1) OPD-Scan (NIDEK, Gamagori, Japan), 2) WASCA (Zeiss/Meditec, Jena, Germany), and 3) Allegretto (WaveLight Laser Technologies AG, Erlangen, Germany). Subjects were healthy adults (19 men and 21 women; mean age: 20.8 +/- 2.5 years). Refractive errors ranged from +1.5 to -9.75 diopters (D) (mean: +1.83 +/- 2.74 D) with up to 1.75 D cylinder (mean: 0.58 +/- 0.53 D). Three readings were collected per instrument by one examiner without anticholinergic agents. Refraction values were decomposed into vector components for analysis, resulting in mean spherical equivalent refraction (M) and J0 and J45 being vectors of cylindrical power at 0 degrees and 45 degrees, respectively. RESULTS: Positive correlation was observed between wavefront analyzers and the SRW-5000 for spherical equivalent refraction (OPD-Scan, r=0.959, P<.001; WASCA, r=0.981, P<.001; Allegretto, r=0.942, P<.001). Mean differences and limits of agreement showed more negative spherical equivalent refraction with wavefront analyzers (OPD-Scan, 0.406 +/- 0.768 D [range: 0.235 to 0.580 D] [P<.001]; WASCA, 0.511 +/- 0.550 D [range: 0.390 to 0.634 D] [P<.001]; and Allegretto, 0.434 +/- 0.904 D [range: 0.233 to 0.635 D] [P<.001]). A second analysis eliminating outliers showed the same trend but lower differences: OPD-Scan (n=75), 0.24 +/- 0.41 D (range: 0.15 to 0.34 D) (P<.001); WASCA (n=78), 0.46 +/- 0.47 D (range: 0.36 to 0.57 D) (P<.001); and Allegretto (n=77), 0.30 +/- 0.62 D (range: 0.16 to 0.44 D) (P<.001). No statistically significant differences were noted for J0 and J45. CONCLUSIONS: Wavefront analyzer refraction resulted in 0.30 D more myopia compared to SRW-5000 refraction in eyes without cycloplegia. This is the result of the accommodation excess attributable to instrument myopia. For the relatively low degrees of astigmatism in this study (<2.0 D), good agreement was noted between wavefront analyzers and the SRW-5000. Copyright (C) 2006 SLACK Incorporated

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: A retrospective study of longitudinal case histories, undertaken to establish the clinical and statistical characteristics of unilateral myopic anisometropia (UMA) amongst the juvenile and adolescent population at an optometric practice, is reported. UMA was defined as that specific refractive state where an unequivocally myopic eye is paired with a 'piano' [spherical equivalent refraction, (SER) = ±0.25 Dioptres (D)] companion eye. Methods: The clinical records of all patients aged <19 years on file at an established independent optometric practice were categorised as 'myopic' (SER ≤-0.50 D), 'hypermetropie' (≥+0.75 D) or 'emmetropic' (≥-0.37≤+0.62 D). Subsequently all juvenile patients matching the UMA criterion, together with a case-matched group of bilaterally myopic individuals, were selected as the comparative study populations. Results: A total of 14.4% (n = 21 of 146) of the juvenile myopic case histories were identified as cases of UMA. More than half of these UMA cases emerged between the ages of 11.5 and 13.5 years. There was a marked female gender bias. The linear gradient of the age-related mean refractive trend in the myopic eye of the UMA population was not statistically significantly different (p > 0.1) to that fitted to the ametropic progression recorded in either eye of the case-matched population of young bilateral myopes; uniquely the slope associated with the companion eye of UMA cases was statistically significantly (p < 0.025) less steep. Compared with bilateral myopes fewer cases of UMA required a refractive correction to relieve visual or asthenopic symptoms, and this initial correction was dispensed on average 1 year later (at age 12.7 years) in UMA patients. Conclusions: Individuals identified as demonstrating clinically-defined UMA can be considered as distinct but functionally normal cases on the continuum of human refractive error. However, any unilaterally-acting determining factor(s) underlying the genesis of the condition remain obscure. © 2004 The College of Optometrists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The myopic eye is generally considered to be a vulnerable eye and, at levels greater than 6 D, one that is especially susceptible to a range of ocular pathologies. There is concern therefore that the prevalence of myopia in young adolescent eyes has increased substantially over recent decades and is now approaching 10-25% and 60-80%, respectively, in industrialized societies of the West and East. Whereas it is clear that the major structural correlate of myopia is longitudinal elongation of the posterior vitreous chamber, other potential correlates include profiles of lenticular and corneal power, the relationship between longitudinal and transverse vitreous chamber dimensions and ocular volume. The most potent predictors for juvenile-onset myopia continue to be a refractive error ≤+0.50 D at 5 years of age and family history. Significant and continuing progress is being made on the genetic characteristics of high myopia with at least four chromosomes currently identified. Twin studies and genetic modelling have computed a heritability index of at least 80% across the whole ametropic continuum. The high index does not, however, preclude an environmental precursor, sustained near work with high cognitive demand being the most likely. The significance of associations between accommodation, oculomotor dysfunction and human myopia is equivocal despite animal models that have demonstrated that sustained hyperopic defocus can induce vitreous chamber growth. Recent optical and pharmaceutical approaches to the reduction of myopia progression in children are likely precedents for future research, for example progressive addition spectacle lens trials and the use of the topical MI muscarinic antagonist pirenzepine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Macular pigment (MP) is the collective name for three carotenoids, lutein, zeaxanthin and meso-zeaxanthin, which are found at high concentrations in the central macula. The macular carotenoids, like all carotenoids, are entirely of dietary origin. The term ‘macular pigment optical density’ (MPOD) refers to the peak concentration of MP in the retina, which varies from one individual to the next and is measurable in vivo. On account of its blue-light-filtering and antioxidant properties, MP has become a subject of interest with respect to age-related macular degeneration (AMD), the hypothesis being that MP helps to protect against AMD; the higher the MPOD, the lower the risk for AMD. Recently, a new MPOD-measuring device, the MPS 9000 (MPS), entered the ophthalmic market. Using this device, the research described here aimed to contribute new information to the MP literature. A second MPOD instrument, the Macular Pigment Reflectometer, was also used at times, but a reliability study (included in the thesis) demonstrated that it was unsuitable for use on its own. First, a series of exploratory investigations were undertaken to maximize the accuracy and consistency of MPOD measurements taken with the MPS; a protocol was established that substantially improved repeatability. Subsequently, a series of MPOD-based studies were conducted on anisometropia, South Asian race, blue-light-filtering contact lenses, and dietary modification with kale. The principle findings were as follows: interocular MPOD differences were not attributable to interocular refractive error differences; young adults of South Asian origin had significant gender-related MPOD differences (males>females, p<0.01), and they also had significantly higher MPOD than Caucasians (p<0.0005); wearing blue-light-filtering contact lenses for eight months did not affect MPOD; and dietary modification with kale for 16 weeks did not increase MPOD. This body of research adds new insights to MP knowledge, which in turn may contribute to MP knowledge in the context of AMD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose. To evaluate the repeatability and reproducibility of subfoveal choroidal thickness (CT) calculations performed manually using optical coherence tomography (OCT). Methods. The CT was imaged in vivo at each of two visits on 11 healthy volunteers (mean age, 35.72 ± 13.19 years) using the spectral domain OCT. CT was manually measured after applying ImageJ processing filters on 15 radial subfoveal scans. Each radial scan was spaced 12° from each other and contained 2500 A-scans. The coefficient of variability, coefficient of repeatability (CoR), coefficient of reproducibility, and intraclass correlation coefficient determined the reproducibility and repeatability of the calculation. Axial length (AL) and mean spherical equivalent refractive error were measured with the IOLMaster and an open view autorefractor to study their potential relationship with CT. Results. The within-visit and between-visit coefficient of variability, CoR, coefficient of reproducibility, and intraclass correlation coefficient were 0.80, 2.97% 2.44%, and 99%, respectively. The subfoveal CT correlated significantly with AL (R = -0.60, p = 0.05). Conclusions. The subfoveal CT could be measured manually in vivo using OCT and the readings obtained from the healthy subjects evaluated were repeatable and reproducible. It is proposed that OCT could be a useful instrument to perform in vivo assessment and monitoring of CT changes in retinal disease. The preliminary results suggest a negative correlation between subfoveal CT and AL in such a way that it decreases with increasing AL but not with refractive error.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a non-invasive phakometric method for determining corneal axis rotation relative to the visual axis (β) together with crystalline lens axis tilt (α) and decentration (d) relative to the corneal axis. This does not require corneal contact A-scan ultrasonography for the measurement of intraocular surface separations. Theoretical inherent errors of the method, evaluated by ray tracing through schematic eyes incorporating the full range of human ocular component variations, were found to be larger than the measurement errors (β < 0.67°, α < 0.72° and d < 0.08 mm) observed in nine human eyes with known ocular component dimensions. Intersubject variations (mean ± S.D.: β = 6.2 ± 3.4° temporal, α = 0.2 ± 1.8° temporal and d = 0.1 ± 0.1 mm temporal) and repeatability (1.96 × S.D. of difference between repeat readings: β ± 2.0°, α ± 1.8° and d ± 0.2 mm) were studied by measuring the left eyes of 45 subjects (aged 18-42 years, 29 females and 16 males, 15 Caucasians, 29 Indian Asians, one African, refractive error range -7.25 to +1.25 D mean spherical equivalent) on two occasions. © 2005 The College of Optometrists.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE. To investigate objectively and noninvasively the role of cognitive demand on autonomic control of systemic cardiovascular and ocular accommodative responses in emmetropes and myopes of late-onset. METHODS. Sixteen subjects (10 men, 6 women) aged between 18 and 34 years (mean ± SD: 22.6 ± 4.4 years), eight emmetropes (EMMs; mean spherical equivalent [MSE] refractive error ± SD: 0.05 ± 0.24 D) and eight with late-onset myopia (LOMs; MSE ± SD: -3.66 ± 2.31 D) participated in the study. Subjects viewed stationary numerical digits monocularly within a Badal optical system (at both 0.0 and -3.0 D) while performing a two-alternative, forced-choice paradigm that matched cognitive loading across subjects. Five individually matched cognitive levels of increasing difficulty were used in random order for each subject. Five 20-second, continuous-objective recordings of the accommodative response measured with an open-view infrared autorefractor were obtained for each cognitive level, whereas simultaneous measurement of heart rate was continuously recorded with a finger-mounted piezoelectric pulse transducer for 5 minutes. Fast Fourier transformation of cardiovascular function allowed the relative power of the autonomic components to be assessed in the frequency domain, whereas heart period gave an indication of the time-domain response. RESULTS. Increasing the cognitive demand led to a significant reduction in the accommodative response in all subjects (0.0 D: by -0.35 ± 0.33 D; -3.0 D: by -0.31 ± 0.40 D, P < 0.001). The greater lag of LOMs compared with EMMs was not significant (P = 0.07) at both distance (0.38 ± 0.35 D) and near (0.14 ± 0.42 D). Mean heart period reduced with increasing levels of workload (P < 0.0005). LOMs exhibited a relative elevation in sympathetic system activity compared to EMMs. Within refractive groups, however, accommodative shifts with increasing cognition correlated with parasympathetic activity (r = 0.99, P < 0.001), more than with sympathetic activity (r = 0.62, P > 0.05). CONCLUSIONS. In an equivalent workload paradigm, increasing cognitive demand caused a reduction in accommodative response that was attributable principally to a concurrent reduction in the relative power of the parasympathetic component of the autonomic nervous system (ANS). The disparity in accommodative response between EMMs and LOMs, however, appears to be augmented by changes in the sympathetic nervous component of the systemic ANS. Copyright © Association for Research in Vision and Ophthalmology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To evaluate theoretically three previously published formulae that use intra-operative aphakic refractive error to calculate intraocular lens (IOL) power, not necessitating pre-operative biometry. The formulae are as follows: IOL power (D) = Aphakic refraction x 2.01 [Ianchulev et al., J. Cataract Refract. Surg.31 (2005) 1530]; IOL power (D) = Aphakic refraction x 1.75 [Mackool et al., J. Cataract Refract. Surg.32 (2006) 435]; IOL power (D) = 0.07x(2) + 1.27x + 1.22, where x = aphakic refraction [Leccisotti, Graefes Arch. Clin. Exp. Ophthalmol.246 (2008) 729]. METHODS: Gaussian first order calculations were used to determine the relationship between intra-operative aphakic refractive error and the IOL power required for emmetropia in a series of schematic eyes incorporating varying corneal powers, pre-operative crystalline lens powers, axial lengths and post-operative IOL positions. The three previously published formulae, based on empirical data, were then compared in terms of IOL power errors that arose in the same schematic eye variants. RESULTS: An inverse relationship exists between theoretical ratio and axial length. Corneal power and initial lens power have little effect on calculated ratios, whilst final IOL position has a significant impact. None of the three empirically derived formulae are universally accurate but each is able to predict IOL power precisely in certain theoretical scenarios. The formulae derived by Ianchulev et al. and Leccisotti are most accurate for posterior IOL positions, whereas the Mackool et al. formula is most reliable when the IOL is located more anteriorly. CONCLUSION: Final IOL position was found to be the chief determinant of IOL power errors. Although the A-constants of IOLs are known and may be accurate, a variety of factors can still influence the final IOL position and lead to undesirable refractive errors. Optimum results using these novel formulae would be achieved in myopic eyes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: A clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500 (Japan) was performed to evaluate validity and repeatability compared with non-cycloplegic subjective refraction and Javal–Schiotz keratometry. An investigation into the dynamic recording capabilities of the instrument was also conducted. Methods: Refractive error measurements were obtained from 150 eyes of 75 subjects (aged 25.12 ± 9.03 years), subjectively by a masked optometrist, and objectively with the WAM-5500 at a second session. Keratometry measurements from the WAM-5500 were compared to Javal–Schiotz readings. Intratest variability was examined on all subjects, whilst intertest variability was assessed on a subgroup of 44 eyes 7–14 days after the initial objective measures. The accuracy of the dynamic recording mode of the instrument and its tolerance to longitudinal movement was evaluated using a model eye. An additional evaluation of the dynamic mode was performed using a human eye in relaxed and accommodated states. Results: Refractive error determined by the WAM-5500 was found to be very similar (p = 0.77) to subjective refraction (difference, -0.01 ± 0.38 D). The instrument was accurate and reliable over a wide range of refractive errors (-6.38 to +4.88 D). WAM-5500 keratometry values were steeper by approximately 0.05 mm in both the vertical and horizontal meridians. High intertest repeatability was demonstrated for all parameters measured: for sphere, cylinder power and MSE, over 90% of retest values fell within ±0.50 D of initial testing. In dynamic (high-speed) mode, the root-mean-square of the fluctuations was 0.005 ± 0.0005 D and a high level of recording accuracy was maintained when the measurement ring was significantly blurred by longitudinal movement of the instrument head. Conclusion: The WAM-5500 Auto Ref/Keratometer represents a reliable and valid objective refraction tool for general optometric practice, with important additional features allowing pupil size determination and easy conversion into high-speed mode, increasing its usefulness post-surgically following accommodating intra-ocular lens implantation, and as a research tool in the study of accommodation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose. The prevalence of myopia is known to vary with age, ethnicity, level of education, and socioeconomic status, with a high prevalence reported in university students and in people from East Asian countries. This study determines the prevalence of ametropia in a mixed ethnicity U.K. university student population and compares associated ocular biometric measures. Methods. Refractive error and related ocular component data were collected on 373 first-year U.K. undergraduate students (mean age = 19.55 years ± 2.99, range = 17-30 years) at the start of the academic year at Aston University, Birmingham, and the University of Bradford, West Yorkshire. The ethnic variation of the students was as follows: white 38.9%, British Asian 58.2%, Chinese 2.1%, and black 0.8%. Noncycloplegic refractive error was measured with an infrared open-field autorefractor, the Shin-Nippon NVision-K 5001 (Shin Nippon, Ryusyo Industrial Co. Ltd, Osaka, Japan). Myopia was defined as a mean spherical equivalent (MSE) less than or equal to -0.50 D. Hyperopia was defined as an MSE greater than or equal to +0.50 D. Axial length, corneal curvature, and anterior chamber depth were measured using the Zeiss IOLMaster (Carl Zeiss, Jena, GmBH). Results. The analysis was carried out only for white and British Asian groups. The overall distribution of refractive error exhibited leptokurtosis, and prevalence levels were similar for white and British Asian (the predominant ethnic group) students across each ametropic group: myopia (50% vs. 53.4%), hyperopia (18.8% vs. 17.3%), and emmetropia (31.2% vs. 29.3%). There were no significant differences in the distribution of ametropia and biometric components between white and British Asian samples. Conclusion. The absence of a significant difference in refractive error and ocular components between white and British Asian students exposed to the same educational system is of interest. However, it is clear that a further study incorporating formal epidemiologic methods of analysis is required to address adequately the recent proposal that juvenile myopia develops principally from myopiagenic environments and is relatively independent of ethnicity.