36 resultados para two-layer fluid


Relevância:

50.00% 50.00%

Publicador:

Resumo:

A horizontal fluid layer heated from below in the presence of a vertical magnetic field is considered. A simple asymptotic analysis is presented which demonstrates that a convection mode attached to the side walls of the layer sets in at Rayleigh numbers much below those required for the onset of convection in the bulk of the layer. The analysis complements an earlier analysis by Houchens [J. Fluid Mech. 469, 189 (2002)] which derived expressions for the critical Rayleigh number for the onset of convection in a vertical cylinder with an axial magnetic field in the cases of two aspect ratios. © 2008 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Simulations examining pattern competition have been performed on a horizontal homogeneously heated layer that is bounded by an isothermal plane above an adiabatic plane. Several different circulation patterns arose as the heating regime applied to the horizontal layer was modified. The sequence of the patterns formed as the Grashof number was increased had the following order: laminar, z-axis rolls, squares, hexagons and pentagons, pentagons and then two different square modes of differing orientations. Fourier analysis was used to determine how the key modes interact in the presence of different patterns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Simulations examining pattern competition have been performed on a horizontal homogeneously heated layer that is bounded by an isothermal plane above an adiabatic plane. Several different circulation patterns arose as the heating regime applied to the horizontal layer was modified. The sequence of the patterns formed as the Grashof number was increased had the following order: laminar layer, rolls, squares, hexagons and pentagons, and then two square modes of differing orientations. Fourier analysis was used to determine how the key modes interact with each pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layer 5 contains the major projection neurons of the neocortex and is composed of two major cell types: regular spiking (RS) cells, which have cortico-cortical projections, and intrinsic bursting cells (IB), which have subcortical projections. Little is known about the plasticity processes and specifically the molecular mechanisms by which these two cell classes develop and maintain their unique integrative properties. In this study, we find that RS and IB cells show fundementally different experience-dependent plasticity processes and integrate Hebbian and homeostatic components of plasticity differently. Both RS and IB cells showed TNFα-dependent homeostatic plasticity in response to sensory deprivation, but IB cells were capable of a much faster synaptic depression and homeostatic rebound than RS cells. Only IB cells showed input-specific potentiation that depended on CaMKII autophosphorylation. Our findings demonstrate that plasticity mechanisms are not uniform within the neocortex, even within a cortical layer, but are specialized within subcircuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inclusion of high-level scripting functionality in state-of-the-art rendering APIs indicates a movement toward data-driven methodologies for structuring next generation rendering pipelines. A similar theme can be seen in the use of composition languages to deploy component software using selection and configuration of collaborating component implementations. In this paper we introduce the Fluid framework, which places particular emphasis on the use of high-level data manipulations in order to develop component based software that is flexible, extensible, and expressive. We introduce a data-driven, object oriented programming methodology to component based software development, and demonstrate how a rendering system with a similar focus on abstract manipulations can be incorporated, in order to develop a visualization application for geospatial data. In particular we describe a novel SAS script integration layer that provides access to vertex and fragment programs, producing a very controllable, responsive rendering system. The proposed system is very similar to developments speculatively planned for DirectX 10, but uses open standards and has cross platform applicability. © The Eurographics Association 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition of internally heated inclined plane parallel shear flows is examined numerically for the case of finite values of the Prandtl number Pr. We show that as the strength of the homogeneously distributed heat source is increased the basic flow loses stability to two-dimensional perturbations of the transverse roll type in a Hopf bifurcation for the vertical orientation of the fluid layer, whereas perturbations of the longitudinal roll type are most dangerous for a wide range of the value of the angle of inclination. In the case of the horizontal inclination transverse roll and longitudinal roll perturbations share the responsibility for the prime instability. Following the linear stability analysis for the general inclination of the fluid layer our attention is focused on a numerical study of the finite amplitude secondary travelling-wave solutions (TW) that develop from the perturbations of the transverse roll type for the vertical inclination of the fluid layer. The stability of the secondary TW against three-dimensional perturbations is also examined and our study shows that for Pr=0.71 the secondary instability sets in as a quasi-periodic mode, while for Pr=7 it is phase-locked to the secondary TW. The present study complements and extends the recent study by Nagata and Generalis (2002) in the case of vertical inclination for Pr=0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-linear solutions and studies of their stability are presented for flows in a homogeneously heated fluid layer under the influence of a constant pressure gradient or when the mass flux across any lateral cross-section of the channel is required to vanish. The critical Grashof number is determined by a linear stability analysis of the basic state which depends only on the z-coordinate perpendicular to the boundary. Bifurcating longitudinal rolls as well as secondary solutions depending on the streamwise x-coordinate are investigated and their amplitudes are determined as functions of the supercritical Grashof number for various Prandtl numbers and angles of inclination of the layer. Solutions that emerge from a Hopf bifurcation assume the form of propagating waves and can thus be considered as steady flows relative to an appropriately moving frame of reference. The stability of these solutions with respect to three-dimensional disturbances is also analyzed in order to identify possible bifurcation points for evolving tertiary flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine the equilibrium states of finite amplitude flow in a horizontal fluid layer with differential heating between the two rigid boundaries. The solutions to the Navier-Stokes equations are obtained by means of a perturbation method for evaluating the Landau constants and through a Newton-Raphson iterative method that results from the Fourier expansion of the solutions that bifurcate above the linear stability threshold of infinitesimal disturbances. The results obtained from these two different methods of evaluating the convective flow are compared in the neighborhood of the critical Rayleigh number. We find that for small Prandtl numbers the discrepancy of the two methods is noticeable. © 2009 The Physical Society of Japan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations into the modelling techniques that depict the transport of discrete phases (gas bubbles or solid particles) and model biochemical reactions in a bubble column reactor are discussed here. The mixture model was used to calculate gas-liquid, solid-liquid and gasliquid-solid interactions. Multiphase flow is a difficult phenomenon to capture, particularly in bubble columns where the major driving force is caused by the injection of gas bubbles. The gas bubbles cause a large density difference to occur that results in transient multi-dimensional fluid motion. Standard design procedures do not account for the transient motion, due to the simplifying assumptions of steady plug flow. Computational fluid dynamics (CFD) can assist in expanding the understanding of complex flows in bubble columns by characterising the flow phenomena for many geometrical configurations. Therefore, CFD has a role in the education of chemical and biochemical engineers, providing the examples of flow phenomena that many engineers may not experience, even through experimentation. The performance of the mixture model was investigated for three domains (plane, rectangular and cylindrical) and three flow models (laminar, k-e turbulence and the Reynolds stresses). mThis investigation raised many questions about how gas-liquid interactions are captured numerically. To answer some of these questions the analogy between thermal convection in a cavity and gas-liquid flow in bubble columns was invoked. This involved modelling the buoyant motion of air in a narrow cavity for a number of turbulence schemes. The difference in density was caused by a temperature gradient that acted across the width of the cavity. Multiple vortices were obtained when the Reynolds stresses were utilised with the addition of a basic flow profile after each time step. To implement the three-phase models an alternative mixture model was developed and compared against a commercially available mixture model for three turbulence schemes. The scheme where just the Reynolds stresses model was employed, predicted the transient motion of the fluids quite well for both mixture models. Solid-liquid and then alternative formulations of gas-liquid-solid model were compared against one another. The alternative form of the mixture model was found to perform particularly well for both gas and solid phase transport when calculating two and three-phase flow. The improvement in the solutions obtained was a result of the inclusion of the Reynolds stresses model and differences in the mixture models employed. The differences between the alternative mixture models were found in the volume fraction equation (flux and deviatoric stress tensor terms) and the viscosity formulation for the mixture phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents significant development into chaotic mixing induced through periodic boundaries and twisting flows. Three-dimensional closed and throughput domains are shown to exhibit chaotic motion under both time periodic and time independent boundary motions, A property is developed originating from a signature of chaos, sensitive dependence to initial conditions, which successfully quantifies the degree of disorder withjn the mixing systems presented and enables comparisons of the disorder throughout ranges of operating parameters, This work omits physical experimental results but presents significant computational investigation into chaotic systems using commercial computational fluid dynamics techniques. Physical experiments with chaotic mixing systems are, by their very nature, difficult to extract information beyond the recognition that disorder does, does not of partially occurs. The initial aim of this work is to observe whether it is possible to accurately simulate previously published physical experimental results through using commercial CFD techniques. This is shown to be possible for simple two-dimensional systems with time periodic wall movements. From this, and subsequent macro and microscopic observations of flow regimes, a simple explanation is developed for how boundary operating parameters affect the system disorder. Consider the classic two-dimensional rectangular cavity with time periodic velocity of the upper and lower walls, causing two opposing streamline motions. The degree of disorder within the system is related to the magnitude of displacement of individual particles within these opposing streamlines. The rationale is then employed in this work to develop and investigate more complex three-dimensional mixing systems that exhibit throughputs and time independence and are therefore more realistic and a significant advance towards designing chaotic mixers for process industries. Domains inducing chaotic motion through twisting flows are also briefly considered. This work concludes by offering possible advancements to the property developed to quantify disorder and suggestions of domains and associated boundary conditions that are expected to produce chaotic mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tear component deposition onto contact lenses is termed `spoilation' and occurs due to the interaction of synthetic polymers with their biological fluid environment. Spoilation phenomena alter the physico-chemical properties of hydrophilic contact lenses, diminishing the optical properties of the lens; causing discomfort and complications for the wearer. Eventually these alterations render the lens unwearable. The primary aim of this interdisciplinary study was to develop analytical techniques capable of analysing the minute quantities of biological deposition involved, in particular the lipid fraction. Prior to this work such techniques were unavailable for single contact lenses. It is envisaged that these investigations will further the understanding of this biological interfacial conversion. Two main analytical techniques were developed: a high performance liquid chromatography (HPLC) technique and fluorescence spectrofluorimetry. The HPLC method allows analysis of a single contact lens and provided previously unavailable valuable information about variations in the lipid profiles of deposited contact lenses and patient tear films. Fluorescence spectrophotofluorimetry is a sensitive non-destructive technique for observing changes in the fluorescence intensity of biological components on contact lenses. The progression and deposition of tear materials can be monitored and assessed for both in vivo and in vitro spoiled lenses using this technique. An improved in vitro model which is comparable to tears and chemically mimics ocular spoilation was also developed. This model allows the controlled study of extrinsic factors and hydrogel compositions. These studies show that unsaturated tear lipids, probably unsaturated fatty acids, are involved in the interfacial conversion of hydrogel lenses, rendering them incompatible with the ocular microenvironment. Lipid interaction with the lens surface then facilitates secondary deposition of other tear components. Interaction, exchange and immobilisation (by polymerisation) of the lipid layer appears to occur before the final and rapid growth of more complex, insoluble discrete deposits, sometimes called `white spots'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A consequence of a loss of coolant accident is the damage of adjacent insulation materials (IM). IM may then be transported to the containment sump strainers where water is drawn into the ECCS (emergency core cooling system). Blockage of the strainers by IM lead to an increased pressure drop acting on the operating ECCS pumps. IM can also penetrate the strainers, enter the reactor coolant system and then accumulate in the reactor pressure vessel. An experimental and theoretical study that concentrates on mineral wool fiber transport in the containment sump and the ECCS is being performed. The study entails fiber generation and the assessment of fiber transport in single and multi-effect experiments. The experiments include measurement of the terminal settling velocity, the strainer pressure drop, fiber sedimentation and resuspension in a channel flow and jet flow in a rectangular tank. An integrated test facility is also operated to assess the compounded effects. Each experimental facility is used to provide data for the validation of equivalent computational fluid dynamic models. The channel flow facility allows the determination of the steady state distribution of the fibers at different flow velocities. The fibers are modeled in the Eulerian-Eulerian reference frame as spherical wetted agglomerates. The fiber agglomerate size, density, the relative viscosity of the fluid-fiber mixture and the turbulent dispersion of the fibers all affect the steady state accumulation of fibers at the channel base. In the current simulations, two fiber phases are separately considered. The particle size is kept constant while the density is modified, which affects both the terminal velocity and volume fraction. The relative viscosity is only significant at higher concentrations. The numerical model finds that the fibers accumulate at the channel base even at high velocities; therefore, modifications to the drag and turbulent dispersion forces can be made to reduce fiber accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0≤Pr≤100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635-642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work has highlighted the potential of sol-gel-derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The work presented herein provides new insight into the processing of bioactive calcia-silica sol-gel foams, and the reaction mechanisms associated with them when immersed in vitro in a simulated body fluid (SBF). Small-angle X-ray scattering and wide-angle X-ray scattering (diffraction) have been used to study the stabilization of these foams via heat treatment, with analogous in situ time-resolved data being gathered for a foam immersed in SBF. During thermal processing, pore sizes have been identified in the range of 16.5-62.0 nm and are only present once foams have been heated to 400 degrees C and above. Calcium nitrate crystallites were present until foams were heated to 600 degrees C; the crystallite size varied from 75 to 145 nm and increased in size with heat treatment up to 300 degrees C, then decreased in size down to 95 rim at 400 degrees C. The in situ time-resolved data show that the average pore diameter decreases as a function of immersion time in SBF, as calcium phosphates grow on the glass surfaces. Over the same time, Bragg peaks indicative of tricalcium phosphate were evident after only 1-h immersion time, and later, hydroxycarbonate apatite was also seen. The hydroxycarbonate apatite appears to have preferred orientation in the (h,k,0) direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a two phases control method for DSRC vehicle networks at road intersection, where multiple road safety applications may coexist. We consider two safety applications, emergency safety application with high priority and routine safety applications with low priority. The control method is designed to provide high availability and low latency for emergency safety applications while leave as much as possible bandwidth for routine applications. It is expected to be capable of adapting to changing network conditions. In the first phase of the method we use a simulation based offline approach to find out the best configurations for message rate and MAC layer parameters for given numbers of vehicles. In the second phase we use the configurations identified by simulations at roadside access point (AP) for system operation. A utilization function is proposed to balance the QoS performances provided to multiple safety applications. It is demonstrated that the proposed method can largely improve the system performance when compared to fixed control method.