29 resultados para traditional droop controller design
Resumo:
The operation state of photovoltaic Module Integrated Converter (MIC) is subjected to change due to different source and load conditions, while state-swap is usually implemented with flow chart based sequential controller in the past research. In this paper, the signatures for different operational states are evaluated and investigated, which lead to an effective control integrated finite state machine (CIFSM), providing real-time state-swap as fast as the local control loop. The proposed CIFSM is implemented digitally for a boost type MIC prototype and tested under a variety of load and source conditions. The test results prove the effectiveness of the proposed CIFSM design.
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
Direct-drive linear reciprocating compressors offer numerous advantages over conventional counterparts which are usually driven by a rotary induction motor via a crank shaft. However, to ensure efficient and reliable operation under all conditions, it is essential that motor current of a linear compressor follows a sinusoidal current command with a frequency which matches the system resonant frequency. The design of a high-performance current controller for linear compressor drive presents a challenge since the system is highly nonlinear, and an effective solution must be low cost. In this paper, a learning feed-forward current controller for the linear compressors is proposed. It comprises a conventional feedback proportional-integral controller and a feed-forward B-spline neural network (BSNN). The feed-forward BSNN is trained online and in real time in order to minimize the current tracking error. Extensive simulation and experiment results with a prototype linear compressor show that the proposed current controller exhibits high steady state and transient performance. © 2009 IEEE.
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
We propose a scheme for multilevel (nine or more) amplitude regeneration based on a nonlinear optical loop mirror (NOLM) and demonstrate through numerical modeling its efficiency and cascadability on circular 16-, 64-, and 256- symbol constellations. We show that the amplitude noise is efficiently suppressed. The design is flexible and enables variation of the number of levels and their positioning. The scheme is compatible with phase regenerators. Also, compared to the traditional single-NOLM configuration scheme, new features, such as reduced and sign-varied power-dependent phase shift, are available. The model is simple to implement, as it requires only two couplers in addition to the traditional NOLM, and offers a vast range of optimization parameters. © 2014 Optical Society of America.
Resumo:
Introduction-The design of the UK MPharm curriculum is driven by the Royal Pharmaceutical Society of Great Britain (RPSGB) accreditation process and the EU directive (85/432/EEC).[1] Although the RPSGB is informed about teaching activity in UK Schools of Pharmacy (SOPs), there is no database which aggregates information to provide the whole picture of pharmacy education within the UK. The aim of the teaching, learning and assessment study [2] was to document and map current programmes in the 16 established SOPs. Recent developments in programme delivery have resulted in a focus on deep learning (for example, through problem based learning approaches) and on being more student centred and less didactic through lectures. The specific objectives of this part of the study were (a) to quantify the content and modes of delivery of material as described in course documentation and (b) having categorised the range of teaching methods, ask students to rate how important they perceived each one for their own learning (using a three point Likert scale: very important, fairly important or not important). Material and methods-The study design compared three datasets: (1) quantitative course document review, (2) qualitative staff interview and (3) quantitative student self completion survey. All 16 SOPs provided a set of their undergraduate course documentation for the year 2003/4. The documentation variables were entered into Excel tables. A self-completion questionnaire was administered to all year four undergraduates, using a pragmatic mixture of methods, (n=1847) in 15 SOPs within Great Britain. The survey data were analysed (n=741) using SPSS, excluding non-UK students who may have undertaken part of their studies within a non-UK university. Results and discussion-Interviews showed that individual teachers and course module leaders determine the choice of teaching methods used. Content review of the documentary evidence showed that 51% of the taught element of the course was delivered using lectures, 31% using practicals (includes computer aided learning) and 18% small group or interactive teaching. There was high uniformity across the schools for the first three years; variation in the final year was due to the project. The average number of hours per year across 15 schools (data for one school were not available) was: year 1: 408 hours; year 2: 401 hours; year 3: 387 hours; year 4: 401 hours. The survey showed that students perceived lectures to be the most important method of teaching after dispensing or clinical practicals. Taking the very important rating only: 94% (n=694) dispensing or clinical practicals; 75% (n=558) lectures; 52% (n=386) workshops, 50% (n=369) tutorials, 43% (n=318) directed study. Scientific laboratory practices were rated very important by only 31% (n=227). The study shows that teaching of pharmacy to undergraduates in the UK is still essentially didactic through a high proportion of formal lectures and with high levels of staff-student contact. Schools consider lectures still to be the most cost effective means of delivering the core syllabus to large cohorts of students. However, this does limit the scope for any optionality within teaching, the scope for small group work is reduced as is the opportunity to develop multi-professional learning or practice placements. Although novel teaching and learning techniques such as e-learning have expanded considerably over the past decade, schools of pharmacy have concentrated on lectures as the best way of coping with the huge expansion in student numbers. References [1] Council Directive. Concerning the coordination of provisions laid down by law, regulation or administrative action in respect of certain activities in the field of pharmacy. Official Journal of the European Communities 1985;85/432/EEC. [2] Wilson K, Jesson J, Langley C, Clarke L, Hatfield K. MPharm Programmes: Where are we now? Report commissioned by the Pharmacy Practice Research Trust., 2005.
Resumo:
As a new medium for questionnaire delivery, the internet has the potential to revolutionize the survey process. Online (web-based) questionnaires provide several advantages over traditional survey methods in terms of cost, speed, appearance, flexibility, functionality, and usability. Designers of online-questionnaires are faced with a plethora of design tools to assist in the development of their electronic questionnaires. Little, if any, support is incorporated, however, within these tools to guide online-questionnaire designers according to best practice. In essence, an online-questionnaire combines questionnaire-based survey functionality with that of a webpage/site. As such, the design of an online-questionnaire should incorporate principles from both contributing fields. Drawing on existing guidelines for paper-based questionnaire design, website design (paying particular attention to issues of accessibility and usability), and existing but scarce guidelines for electronic surveys, we have derived a comprehensive set of guidelines for the design of online-questionnaires. This article introduces this comprehensive set of guidelines – as a practical reference guide – for the design of online-questionnaires.
Resumo:
As a new medium for questionnaire delivery, the internet has the potential to revolutionise the survey process. Online (web-based) questionnaires provide several advantages over traditional survey methods in terms of cost, speed, appearance, flexibility, functionality, and usability [1, 2]. For instance, delivery is faster, responses are received more quickly, and data collection can be automated or accelerated [1- 3]. Online-questionnaires can also provide many capabilities not found in traditional paper-based questionnaires: they can include pop-up instructions and error messages; they can incorporate links; and it is possible to encode difficult skip patterns making such patterns virtually invisible to respondents. Like many new technologies, however, online-questionnaires face criticism despite their advantages. Typically, such criticisms focus on the vulnerability of online-questionnaires to the four standard survey error types: namely, coverage, non-response, sampling, and measurement errors. Although, like all survey errors, coverage error (“the result of not allowing all members of the survey population to have an equal or nonzero chance of being sampled for participation in a survey” [2, pg. 9]) also affects traditional survey methods, it is currently exacerbated in online-questionnaires as a result of the digital divide. That said, many developed countries have reported substantial increases in computer and internet access and/or are targeting this as part of their immediate infrastructural development [4, 5]. Indicating that familiarity with information technologies is increasing, these trends suggest that coverage error will rapidly diminish to an acceptable level (for the developed world at least) in the near future, and in so doing, positively reinforce the advantages of online-questionnaire delivery. The second error type – the non-response error – occurs when individuals fail to respond to the invitation to participate in a survey or abandon a questionnaire before it is completed. Given today’s societal trend towards self-administration [2] the former is inevitable, irrespective of delivery mechanism. Conversely, non-response as a consequence of questionnaire abandonment can be relatively easily addressed. Unlike traditional questionnaires, the delivery mechanism for online-questionnaires makes estimation of questionnaire length and time required for completion difficult1, thus increasing the likelihood of abandonment. By incorporating a range of features into the design of an online questionnaire, it is possible to facilitate such estimation – and indeed, to provide respondents with context sensitive assistance during the response process – and thereby reduce abandonment while eliciting feelings of accomplishment [6]. For online-questionnaires, sampling error (“the result of attempting to survey only some, and not all, of the units in the survey population” [2, pg. 9]) can arise when all but a small portion of the anticipated respondent set is alienated (and so fails to respond) as a result of, for example, disregard for varying connection speeds, bandwidth limitations, browser configurations, monitors, hardware, and user requirements during the questionnaire design process. Similarly, measurement errors (“the result of poor question wording or questions being presented in such a way that inaccurate or uninterpretable answers are obtained” [2, pg. 11]) will lead to respondents becoming confused and frustrated. Sampling, measurement, and non-response errors are likely to occur when an online-questionnaire is poorly designed. Individuals will answer questions incorrectly, abandon questionnaires, and may ultimately refuse to participate in future surveys; thus, the benefit of online questionnaire delivery will not be fully realized. To prevent errors of this kind2, and their consequences, it is extremely important that practical, comprehensive guidelines exist for the design of online questionnaires. Many design guidelines exist for paper-based questionnaire design (e.g. [7-14]); the same is not true for the design of online questionnaires [2, 15, 16]. The research presented in this paper is a first attempt to address this discrepancy. Section 2 describes the derivation of a comprehensive set of guidelines for the design of online-questionnaires and briefly (given space restrictions) outlines the essence of the guidelines themselves. Although online-questionnaires reduce traditional delivery costs (e.g. paper, mail out, and data entry), set up costs can be high given the need to either adopt and acquire training in questionnaire development software or secure the services of a web developer. Neither approach, however, guarantees a good questionnaire (often because the person designing the questionnaire lacks relevant knowledge in questionnaire design). Drawing on existing software evaluation techniques [17, 18], we assessed the extent to which current questionnaire development applications support our guidelines; Section 3 describes the framework used for the evaluation, and Section 4 discusses our findings. Finally, Section 5 concludes with a discussion of further work.
Resumo:
As a new medium for questionnaire delivery, the Internet has the potential to revolutionize the survey process. Online-questionnaires can provide many capabilities not found in traditional paper-based questionnaires. Despite this, and the introduction of a plethora of tools to support online-questionnaire creation, current electronic survey design typically replicates the look-and-feel of paper-based questionnaires, thus failing to harness the full power of the electronic delivery medium. A recent environmental scan of online-questionnaire design tools found that little, if any, support is incorporated within these tools to guide questionnaire designers according to best-practice [Lumsden & Morgan 2005]. This paper briefly introduces a comprehensive set of guidelines for the design of online-questionnaires. Drawn from relevant disparate sources, all the guidelines incorporated within the set are proven in their own right; as an initial assessment of the value of the set of guidelines as a practical reference guide, we undertook an informal study to observe the effect of introducing the guidelines into the design process for a complex online-questionnaire. The paper discusses the qualitative findings — which are encouraging for the role of the guidelines in the ‘bigger picture’ of online survey delivery across many domains such as e-government, e-business, and e-health — of this case study.
Resumo:
As a new medium for questionnaire delivery, the internet has the potential to revolutionise the survey process. Online (web-based) questionnaires provide several advantages over traditional survey methods in terms of cost, speed, appearance, flexibility, functionality, and usability (Bandilla et al., 2003; Dillman, 2000; Kwak and Radler, 2002). Online-questionnaires can also provide many capabilities not found in traditional paper-based questionnaires: they can include pop-up instructions and error messages; they can incorporate links; and it is possible to encode difficult skip patterns making such patterns virtually invisible to respondents. Despite this, and the introduction of numerous tools to support online-questionnaire creation, current electronic survey design typically replicates that of paper-based questionnaires, failing to harness the full power of the electronic delivery medium. Worse, a recent environmental scan of online-questionnaire design tools found that little, if any, support is incorporated within these tools to guide questionnaire designers according to best-practice (Lumsden and Morgan, 2005). This article introduces a comprehensive set of guidelines - a practical reference guide - for the design of online-questionnaires.
Resumo:
The international economic and business environment continues to develop at a rapid rate. Increasing interactions between economies, particularly between Europe and Asia, has raised many important issues regarding transport infrastructure, logistics and broader supply chain management. The potential exists to further stimulate trade provided that these issues are addressed in a logical and systematic manner. However, if this potential is to be realised in practice there is a need to re-evaluate current supply chain configurations. A mismatch currently exists between the technological capability and the supply chain or logistical reality. This mismatch has sharpened the focus on the need for robust approaches to supply chain re-engineering. Traditional approaches to business re-engineering have been based on manufacturing systems engineering and business process management. A recognition that all companies exist as part of bigger supply chains has fundamentally changed the focus of re-engineering. Inefficiencies anywhere in a supply chain result in the chain as a whole being unable to reach its true competitive potential. This reality, combined with the potentially radical impact on business and supply chain architectures of the technologies associated with electronic business, requires organisations to adopt innovative approaches to supply chain analysis and re-design. This paper introduces a systems approach to supply chain re-engineering which is aimed at addressing the challenges which the evolving business environment brings with it. The approach, which is based on work with a variety of both conventional and electronic supply chains, comprises underpinning principles, a methodology and guidelines on good working practice, as well as a suite of tools and techniques. The adoption of approaches such as that outlined in this paper helps to ensure that robust supply chains are designed and implemented in practice. This facilitates an integrated approach, with involvement of all key stakeholders throughout the design process.
Resumo:
Bio-impedance analysis (BIA) provides a rapid, non-invasive technique for body composition estimation. BIA offers a convenient alternative to standard techniques such as MRI, CT scan or DEXA scan for selected types of body composition analysis. The accuracy of BIA is limited because it is an indirect method of composition analysis. It relies on linear relationships between measured impedance and morphological parameters such as height and weight to derive estimates. To overcome these underlying limitations of BIA, a multi-frequency segmental bio-impedance device was constructed through a series of iterative enhancements and improvements of existing BIA instrumentation. Key features of the design included an easy to construct current-source and compact PCB design. The final device was trialled with 22 human volunteers and measured impedance was compared against body composition estimates obtained by DEXA scan. This enabled the development of newer techniques to make BIA predictions. To add a ‘visual aspect’ to BIA, volunteers were scanned in 3D using an inexpensive scattered light gadget (Xbox Kinect controller) and 3D volumes of their limbs were compared with BIA measurements to further improve BIA predictions. A three-stage digital filtering scheme was also implemented to enable extraction of heart-rate data from recorded bio-electrical signals. Additionally modifications have been introduced to measure change in bio-impedance with motion, this could be adapted to further improve accuracy and veracity for limb composition analysis. The findings in this thesis aim to give new direction to the prediction of body composition using BIA. The design development and refinement applied to BIA in this research programme suggest new opportunities to enhance the accuracy and clinical utility of BIA for the prediction of body composition analysis. In particular, the use of bio-impedance to predict limb volumes which would provide an additional metric for body composition measurement and help distinguish between fat and muscle content.
Resumo:
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem. In particular very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic contro algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this short paper.
Resumo:
Design methods and tools are generally best learned and developed experientially [1]. Finding appropriate vehicles for delivering these to students is becoming increasingly challenging, especially when considering only those that will enthuse, intrigue and inspire. This paper traces the development of different eco-car design and build projects which competed in the Shell Eco-Marathon. The cars provided opportunities for experiential learning through a formal learning cycle of CDIO (Conceive, Design, Implement, Operate) or the more traditional understand, explore, create, validate, with both teams developing a functional finished prototype. Lessons learned were applied through the design of a third and fourth eco-car using experimental techniques with bio-composites, combining the knowledge of fibre reinforced composite materials and adhesives with the plywood construction techniques of the two teams. The paper discusses the importance of applying materials and techniques to a real world problem. It will also explore how eco-car and comparing traditional materials and construction techniques with high tech composite materials is an ideal teaching, learning and assessment vehicle for technical design techniques.