21 resultados para the crack extension rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detrimental effects of a hydrogen atmosphere on the fatigue resistance of BS 4360 steel have been assessed by a comparison of crack growth rates in air and hydrogen at a low cycling frequency (0.1Hz), and at a number of temperature (25, 50 and 80 °C). The crack propagation rates in air are almost independent of temperature over this range, but those measured in hydrogen differ by more than an order of magnitude between 25 and 80 °C. The greatest enhancement is seen at 25 °C and at high values of ΔK, the maximum occurring between 40–45 MPa √m at each temperature. There is little hydrogen contribution to crack growth at values of ΔK below 20 MPa √m for R = 0.1. The enhancement of crack growth rates is reflected by the presence of ‘quasi-cleavage’ facets on the fatigue fracture surfaces of specimens tested in hydrogen. These are most apparent where the greatest increases in growth rate are recorded. The facets show linear markings, which run both parallel and perpendicular to the direction of crack growth. The former are analogous to the ‘river’ lines noted on brittle cleavage facets, and reflect the propagation direction. The latter are more unusual, and indicate that facet formation by hydrogen embrittlement during fatigue is a step-wise process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consideration of the influence of test technique and data analysis method is important for data comparison and design purposes. The paper highlights the effects of replication interval, crack growth rate averaging and curve-fitting procedures on crack growth rate results for a Ni-base alloy. It is shown that an upper bound crack growth rate line is not appropriate for use in fatigue design, and that the derivative of a quadratic fit to the a vs N data looks promising. However, this type of averaging, or curve fitting, is not useful in developing an understanding of microstructure/crack tip interactions. For this purpose, simple replica-to-replica growth rate calculations are preferable. © 1988.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue crack growth rate tests have been performed on Nimonic AP1, a powder formed Ni-base superalloy, in air and vacuum at room temperature. These show that threshold values are higher, and near-threshold (faceted) crack growth rates are lower, in vacuum than in air, although at high growth rates, in the “structure-insensitive” regime, R-ratio and a dilute environment have little effect. Changing the R-ratio from 0.1 to 0.5 in vacuum does not alter near-threshold crack growth rates very much, despite more extensive secondary cracking being noticeable at R= 0.5. In vacuum, rewelding occurs at contact points across the crack as ΔK falls. This leads to the production of extensive fracture surface damage and bulky fretting debris, and is thought to be a significant contributory factor to the observed increase in threshold values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crack initiation was studied for asphalt mixtures under external compressive loads. High tensile localized stresses e direction of the external loads. A quantitative crack initiation criterion the edges of compressed air voids lead to the growth of wing cracks in thon was derived using pseudostrain energy balance principle. Bond energy is determined and it increases with aging and loading rate while decreases with temperature. Cohesive and adhesive cracking occur simultaneously and a method was proposed to determine the individual percentage. The crack initiation criterion is simplified and validated through comparing the predicted and measured compressive strength of the asphalt mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asphalt mixtures exhibit primary, secondary, and tertiary stages in sequence during a rutting deterioration. Many field asphalt pavements are still in service even when the asphalt layer is in the tertiary stage, and rehabilitation is not performed until a significant amount of rutting accompanied by numerous macrocracks is observed. The objective of this study was to provide a mechanistic method to model the anisotropic cracking of the asphalt mixtures in compression during the tertiary stage of rutting. Laboratory tests including nondestructive and destructive tests were performed to obtain the viscoelastic and viscofracture properties of the asphalt mixtures. Each of the measured axial and radial total strains in the destructive tests were decomposed into elastic, plastic, viscoelastic, viscoplastic, and viscofracture strains using the pseudostrain method in an extended elastic-viscoelastic correspondence principle. The viscofracture strains are caused by the crack growth, which is primarily signaled by the increase of phase angle in the tertiary flow. The viscofracture properties are characterized using the anisotropic damage densities (i.e., the ratio of the lost area caused by cracks to the original total area in orthogonal directions). Using the decomposed axial and radial viscofracture strains, the axial and radial damage densities were determined by using a dissipated pseudostrain energy balance principle and a geometric analysis of the cracks, respectively. Anisotropic pseudo J-integral Paris' laws in terms of damage densities were used to characterize the evolution of the cracks in compression. The material constants in the Paris' law are determined and found to be highly correlated. These tests, analysis, and modeling were performed on different asphalt mixtures with two binders, two air void contents, and three aging periods. Consistent results were obtained; for instance, a stiffer asphalt mixture is demonstrated to have a higher modulus, a lower phase angle, a greater flow number, and a larger n1 value (exponent of Paris' law). The calculation of the orientation of cracks demonstrates that the asphalt mixture with 4% air voids has a brittle fracture and a splitting crack mode, whereas the asphalt mixture with 7% air voids tends to have a ductile fracture and a diagonal sliding crack mode. Cracks of the asphalt mixtures in compression are inclined to propagate along the direction of the external compressive load. © 2014 American Society of Civil Engineers.