40 resultados para the Fuzzy Colour Segmentation Algorithm
Resumo:
We propose a generative topographic mapping (GTM) based data visualization with simultaneous feature selection (GTM-FS) approach which not only provides a better visualization by modeling irrelevant features ("noise") using a separate shared distribution but also gives a saliency value for each feature which helps the user to assess their significance. This technical report presents a varient of the Expectation-Maximization (EM) algorithm for GTM-FS.
Resumo:
Purpose – In 2001, Euronext-Liffe introduced single security futures contracts for the first time. The purpose of this paper is to examine the impact that these single security futures had on the volatility of the underlying stocks. Design/methodology/approach – The Inclan and Tiao algorithm was used to show that the volatility of underlying securities did not change after universal futures were introduced. Findings – It was found that in the aftermath of the introduction of universal futures the volatility of the underlying securities increases. Increased volatility is not apparent in the control sample. This suggests that single security futures did have some impact on the volatility of the underlying securities. Originality/value – Despite the huge literature that has examined the effects of a futures listing on the volatility of underlying stock returns, little consensus has emerged. This paper adds to the dialogue by focusing on the effects of a single security futures contract rather than concentrating on the effects of index futures contracts.
Resumo:
Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.
Resumo:
Derivational morphology proposes meaningful connections between words and is largely unrepresented in lexical databases. This thesis presents a project to enrich a lexical database with morphological links and to evaluate their contribution to disambiguation. A lexical database with sense distinctions was required. WordNet was chosen because of its free availability and widespread use. Its suitability was assessed through critical evaluation with respect to specifications and criticisms, using a transparent, extensible model. The identification of serious shortcomings suggested a portable enrichment methodology, applicable to alternative resources. Although 40% of the most frequent words are prepositions, they have been largely ignored by computational linguists, so addition of prepositions was also required. The preferred approach to morphological enrichment was to infer relations from phenomena discovered algorithmically. Both existing databases and existing algorithms can capture regular morphological relations, but cannot capture exceptions correctly; neither of them provide any semantic information. Some morphological analysis algorithms are subject to the fallacy that morphological analysis can be performed simply by segmentation. Morphological rules, grounded in observation and etymology, govern associations between and attachment of suffixes and contribute to defining the meaning of morphological relationships. Specifying character substitutions circumvents the segmentation fallacy. Morphological rules are prone to undergeneration, minimised through a variable lexical validity requirement, and overgeneration, minimised by rule reformulation and restricting monosyllabic output. Rules take into account the morphology of ancestor languages through co-occurrences of morphological patterns. Multiple rules applicable to an input suffix need their precedence established. The resistance of prefixations to segmentation has been addressed by identifying linking vowel exceptions and irregular prefixes. The automatic affix discovery algorithm applies heuristics to identify meaningful affixes and is combined with morphological rules into a hybrid model, fed only with empirical data, collected without supervision. Further algorithms apply the rules optimally to automatically pre-identified suffixes and break words into their component morphemes. To handle exceptions, stoplists were created in response to initial errors and fed back into the model through iterative development, leading to 100% precision, contestable only on lexicographic criteria. Stoplist length is minimised by special treatment of monosyllables and reformulation of rules. 96% of words and phrases are analysed. 218,802 directed derivational links have been encoded in the lexicon rather than the wordnet component of the model because the lexicon provides the optimal clustering of word senses. Both links and analyser are portable to an alternative lexicon. The evaluation uses the extended gloss overlaps disambiguation algorithm. The enriched model outperformed WordNet in terms of recall without loss of precision. Failure of all experiments to outperform disambiguation by frequency reflects on WordNet sense distinctions.
Resumo:
In England, publicly supported advice to small firms is organized primarily through the Business Link (BL) network. Using the programme theory underlying this business support, we develop four propositions and test these empirically using data from a new survey of over 3000 English SMEs. We find strong support for the value to BL operators of a high profile to boost take-up. We find support for the BL’s market segmentation that targets intensive assistance to younger firms and those with limited liability. Allowing for sample selection, we find no significant effects on growth from ‘other’ assistance but find a significant employment boost from intensive assistance. This partially supports the programme theory assertion that BL improves business growth and strongly supports the proposition that there are differential outcomes from intensive and other assistance. This suggests an improvement in the BL network, compared with earlier studies, notably Roper et al. (2001), Roper and Hart (2005).
Resumo:
PURPOSE. A methodology for noninvasively characterizing the three-dimensional (3-D) shape of the complete human eye is not currently available for research into ocular diseases that have a structural substrate, such as myopia. A novel application of a magnetic resonance imaging (MRI) acquisition and analysis technique is presented that, for the first time, allows the 3-D shape of the eye to be investigated fully. METHODS. The technique involves the acquisition of a T2-weighted MRI, which is optimized to reveal the fluid-filled chambers of the eye. Automatic segmentation and meshing algorithms generate a 3-D surface model, which can be shaded with morphologic parameters such as distance from the posterior corneal pole and deviation from sphericity. Full details of the method are illustrated with data from 14 eyes of seven individuals. The spatial accuracy of the calculated models is demonstrated by comparing the MRI-derived axial lengths with values measured in the same eyes using interferometry. RESULTS. The color-coded eye models showed substantial variation in the absolute size of the 14 eyes. Variations in the sphericity of the eyes were also evident, with some appearing approximately spherical whereas others were clearly oblate and one was slightly prolate. Nasal-temporal asymmetries were noted in some subjects. CONCLUSIONS. The MRI acquisition and analysis technique allows a novel way of examining 3-D ocular shape. The ability to stratify and analyze eye shape, ocular volume, and sphericity will further extend the understanding of which specific biometric parameters predispose emmetropic children subsequently to develop myopia. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
We examined the relations between selection for perception and selection for action in a patient FK, with bilateral damage to his temporal and medial frontal cortices. The task required a simple grasp response to a common object (a cup) in the presence of a distractor (another cup). The target was cued by colour or location, and FK made manual responses. We examined the effects on performance of cued and uncued dimensions of both the target and the distractor. FK was impaired at perceptually selecting the target when cued by colour, when the target colour but not its location changed on successive trials. The effect was sensitive to the relative orientations of targets and distractors, indicating an effect of action selection on perceptual selection, when perceptual selection was weakly instantiated. The dimension-specific carry-over effect on reaching was enhanced when there was a temporal delay between a cue and the response, and it disappeared when there was a between-trial delay. The results indicate that perceptual and action selection systems interact to determine the efficiency with which actions are selected to particular objects.
Resumo:
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.
Resumo:
Feeding behaviour of trained rainbow trout was investigated by the use of demand feeders, under different light conditions. The effects of the energy content of diet, and the size, colour and texture of feed pellets, on the feeding behaviour, were studied. An attempt was made to locate the assumed centres for feeding and satiety in the hypothalamus of brain by the intraperitoneal injections of goldthioglucose. Feeding under nine different constant photoperiods at 160 lux, at a temperature of 13.5°C, showed that trout exhibit a rhythmic pattern of feeding behaviour in all photoperiods except in continuous darkness.Feeding rhythms of trout attributable to the degree of gut distension were formed every eight to ten hours. Further studies by varying levels of light intensity revealed the interaction of light intensity and photoperiod. At shorter photoperiods lower levels of light intensity decreased the feeding activity in terms of food intake but by increasing the photoperiod the same feeding activity was accomplished as by the fish subject to a short photoperiod but under higher light intensity.Simulated effect of increasing and decreasing daylengths did not affect the overall food intake and growth performance. Trout are quite efficient in adjusting their food intake in terms of energy content. Colour, size and texture of feed pellets affect the feeding responses and elicit preferential food selection behaviour in trout. Goldthioglucose induced some reversable toxic effects upon general physiology of trout and did not produce any lesions in the assumed areas of feeding and satiety centres in the brain. It was concluded that the feeding behaviour of trout exhibited selective preferences according to the physical nature of food items and those preferences could be further influenced by the biotic and abiotic factors, light being one of the most important abiotic factors.
Resumo:
There are been a resurgence of interest in the neural networks field in recent years, provoked in part by the discovery of the properties of multi-layer networks. This interest has in turn raised questions about the possibility of making neural network behaviour more adaptive by automating some of the processes involved. Prior to these particular questions, the process of determining the parameters and network architecture required to solve a given problem had been a time consuming activity. A number of researchers have attempted to address these issues by automating these processes, concentrating in particular on the dynamic selection of an appropriate network architecture.The work presented here specifically explores the area of automatic architecture selection; it focuses upon the design and implementation of a dynamic algorithm based on the Back-Propagation learning algorithm. The algorithm constructs a single hidden layer as the learning process proceeds using individual pattern error as the basis of unit insertion. This algorithm is applied to several problems of differing type and complexity and is found to produce near minimal architectures that are shown to have a high level of generalisation ability.
Resumo:
We consider a variation of the prototype combinatorial optimization problem known as graph colouring. Our optimization goal is to colour the vertices of a graph with a fixed number of colours, in a way to maximize the number of different colours present in the set of nearest neighbours of each given vertex. This problem, which we pictorially call palette-colouring, has been recently addressed as a basic example of a problem arising in the context of distributed data storage. Even though it has not been proved to be NP-complete, random search algorithms find the problem hard to solve. Heuristics based on a naive belief propagation algorithm are observed to work quite well in certain conditions. In this paper, we build upon the mentioned result, working out the correct belief propagation algorithm, which needs to take into account the many-body nature of the constraints present in this problem. This method improves the naive belief propagation approach at the cost of increased computational effort. We also investigate the emergence of a satisfiable-to-unsatisfiable 'phase transition' as a function of the vertex mean degree, for different ensembles of sparse random graphs in the large size ('thermodynamic') limit.
Resumo:
Link adaptation is a critical component of IEEE 802.11 systems, which adapts transmission rates to dynamic wireless channel conditions. In this paper we investigate a general cross-layer link adaptation algorithm which jointly considers the physical layer link quality and random channel access at the MAC layer. An analytic model is proposed for the link adaptation algorithm. The underlying wireless channel is modeled with a multiple state discrete time Markov chain. Compared with the pure link quality based link adaptation algorithm, the proposed cross-layer algorithm can achieve considerable performance gains of up to 20%.
Resumo:
We investigate a digital back-propagation simplification method to enable computationally-efficient digital nonlinearity compensation for a coherently-detected 112 Gb/s polarization multiplexed quadrature phase shifted keying transmission over a 1,600 km link (20x80km) with no inline compensation. Through numerical simulation, we report up to 80% reduction in required back-propagation steps to perform nonlinear compensation, in comparison to the standard back-propagation algorithm. This method takes into account the correlation between adjacent symbols at a given instant using a weighted-average approach, and optimization of the position of nonlinear compensator stage to enable practical digital back-propagation.
Resumo:
The literature on bond markets and interest rates has focused largely on the term structure of interest rates, specifically, on the so-called expectations hypothesis. At the same time, little is known about the nature of the spread of the interest rates in the money market beyond the fact that such spreads are generally unstable. However, with the evolution of complex financial instruments, it has become imperative to identify the time series process that can help one accurately forecast such spreads into the future. This article explores the nature of the time series process underlying the spread between three-month and one-year US rates, and concludes that the movements in this spread over time is best captured by a GARCH(1,1) process. It also suggests the use of a relatively long term measure of interest rate volatility as an explanatory variable. This exercise has gained added importance in view of the revelation that GARCH based estimates of option prices consistently outperform the corresponding estimates based on the stylized Black-Scholes algorithm.
Resumo:
Renewable energy project development is highly complex and success is by no means guaranteed. Decisions are often made with approximate or uncertain information yet the current methods employed by decision-makers do not necessarily accommodate this. Levelised energy costs (LEC) are one such commonly applied measure utilised within the energy industry to assess the viability of potential projects and inform policy. The research proposes a method for achieving this by enhancing the traditional discounting LEC measure with fuzzy set theory. Furthermore, the research develops the fuzzy LEC (F-LEC) methodology to incorporate the cost of financing a project from debt and equity sources. Applied to an example bioenergy project, the research demonstrates the benefit of incorporating fuzziness for project viability, optimal capital structure and key variable sensitivity analysis decision-making. The proposed method contributes by incorporating uncertain and approximate information to the widely utilised LEC measure and by being applicable to a wide range of energy project viability decisions. © 2013 Elsevier Ltd. All rights reserved.