37 resultados para super-broadband fiber amplifiers


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long period fiber grating (LPFG) can be used as active gain controlling device in EDFA. However, LPFGs fabricated in the standard telecom fiber only have a typical temperature sensitivity of 3-10nm/100°C, which may not be sufficient for implementing tuneable filters capable of wide tuning range and high tuning efficiency. In this paper, we report a theoretical and experimental investigation of thermal properties of LPFGs fabricated in B/Ge co-doped optical fiber. We have found that the temperature sensitivity of the LPFGs in the B/Ge fiber is considerably increased compared with those produced in the standard fiber. The LPFGs written in the B/Ge fiber have achieved, on average, one order of magnitude higher sensitivity than that of the LPFGs produced in the standard telecom fiber. We have also identified that the thermal response of LPFG is strongly dependent on the order of the coupled resonant cladding mode. The maximum sensitivity of 1.75nm/°C achieved by the 10th cladding mode of the 240μm LPFG is nearly 24 times that of the minimum value (0.075nm/C) exhibited by the 30th mode of the 34μm LPFG. Such devices may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high temperature resolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have theoretically and experimentally designed and demonstrated an all-fiber polarization interference filter (AFPIF), which is formed by a polarization-maintaining (PM) fiber cavity structure utilizing two 45° tilted fiber gratings (45°-TFGs) inscribed by UV laser on the PM fiber. Such a filter could generate modulated transmission of linear polarization status. It has been revealed that the modulation depth of the transmission depends on the coupling angle between the 45°-TFGs and the PM fiber cavity. When the two 45°-TFGs in PM fiber are oriented at 45° to the principal axis of the PM fiber cavity, the maximum modulation depth is achievable. Due to the thermal effect on birefringence of the PM fiber, the AFPIF can be tuned over a broad wavelength range just by simple thermal tuning of the cavity. The experiment results show that the temperature tuning sensitivity is proportional to the length ratio of the PM fiber cavity under heating. For 18 and 40 cm long cavities with 6 cm part under heating, the thermal tuning sensitivities are 0.616 and 0.31 nm/° C, respectively, which are almost two orders of magnitude higher than normal fiber Bragg gratings. © 1983-2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is growing pressure to ensure that future broadband networks are both super fast and ubiquitously available to all users without the need for large government subsidies, this requires a radical change to network architectures. © OSA 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, two linear coplanar array antennas based on Indium Phosphide (InP) substrate are designed, presented and compared in terms of bandwidth and gain. Slot introduction in combination with coplanar structure is investigated, providing enhanced antenna gain and bandwidth at the 60 GHz frequency band. In addition the proposed array antennas are evaluated in terms of integration with a high-speed photodiode and investigated in terms of matching, providing a bandwidth that reaches 2 GHz. Moreover a potential beam forming scenario combined with photonic up-conversion scheme has been proposed. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear polarization rotation based all-fiber passively mode-locked Tm3+-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. With the increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ∼1970 nm and ∼2050 nm, were also achieved by shortening and extending the length of Tm3+-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 μm band.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a theoretical study and simulations of a novel fiber-spin tailoring technique to suppress the polarization impairments, namely polarization mode dispersion and polarization dependent gain (PDG), in fiber Raman amplifiers. Whereas use of depolarizer or multiplexing pump laser diodes with a final degree of pump polarization of 1% for periodically spun fiber results in PDG of about 0.3 dB, we demonstrate that application of just a two-section fiber (where the first part is short and has no spin, and the second one is periodically spun) can reduce the PDG to as low as below 0.1 dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a theoretical study of polarization impairments in periodically spun fiber Raman amplifiers. Based on the Stochastic Generator approach we have derived averaged equations to calculate polarization dependent gain and mean-square gain fluctuations. We show that periodically spun fiber can work as a Raman polarizer but it suffers from increased polarization dependent gain and gain fluctuations. Unlike this, application of a depolarizer can result in suppression of polarization dependent gain and gain fluctuations. We demonstrate that it is possible to design a new fiber Raman polarizer by combining a short fiber without spin and properly chosen parameters and a long periodically spun fiber. This polarizer provides almost the same polarization pulling for all input signal states of polarization and so has very small polarization dependent gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and widewavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the generation of 42 fs pulses at 1 µm in a completely fiber-integrated format, which are, to the best of our knowledge, the shortest from all-fiber-integrated Yb-doped fiber lasers to date. The ring fiber cavity incorporates anomalous-dispersion, solid-core photonic crystal fiber with low birefringence, which acts as a broadband, in-fiber Lyot filter to facilitate mode locking. The oscillator operates in the stretched-pulse regime under slight normal net cavity dispersion. The cavity generates 4.7 ps long pulses with a spectral bandwidth of 58.2 nm, which are dechirped to 42 fs via a grating pair compressor outside of the cavity. Relative intensity noise (RIN) of the laser is characterized, with the integrated RIN found to be 0.026% in the 3 Hz-250 kHz frequency range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown theoretically that an optical bottle resonator with a nanoscale radius variation can perform a multinanosecond long dispersionless delay of light in a nanometer-order bandwidth with minimal losses. Experimentally, a 3 mm long resonator with a 2.8 nm deep semiparabolic radius variation is fabricated from a 19??µm radius silica fiber with a subangstrom precision. In excellent agreement with theory, the resonator exhibits the impedance-matched 2.58 ns (3 bytes) delay of 100 ps pulses with 0.44??dB/ns intrinsic loss. This is a miniature slow light delay line with the record large delay time, record small transmission loss, dispersion, and effective speed of light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown theoretically that an optical bottle resonator with a nanoscale radius variation can perform a multinanosecond long dispersionless delay of light in a nanometer-order bandwidth with minimal losses. Experimentally, a 3 mm long resonator with a 2.8 nm deep semiparabolic radius variation is fabricated from a 19??µm radius silica fiber with a subangstrom precision. In excellent agreement with theory, the resonator exhibits the impedance-matched 2.58 ns (3 bytes) delay of 100 ps pulses with 0.44??dB/ns intrinsic loss. This is a miniature slow light delay line with the record large delay time, record small transmission loss, dispersion, and effective speed of light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines recent progress in the use of semiconductor optical amplifiers for phase sensitive signal processing functions, a discussion of the world's first multi-wavelength regenerative wavelength conversion using semiconductor optical amplifiers for BPSK signals. OFC/NFOEC Technical Digest © 2013 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the nonlinear channel capacity of optical fiber communication systems using both linear and nonlinear amplifiers. We show that the capacity of a nonlinear transmission system employing linear optical amplifiers can be enhanced by over 300% by using all optical regeneration. © OSA 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a theory of an optimal distribution of the gain of in-line amplifiers in dispersion-managed transmission systems. As an example of the application of the general method we propose a design of the line with periodically imbalanced in-line amplification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear polarization rotation based all-fiber passively modelocked Tm3+-doped fiber laser is demonstrated by using a 45° tilted fiber grating (TFG) as an in-line polarizer. The 45° TFG centered at 2000 nm with polarization dependent loss (PDL) of >12 dB at 1850 nm∼2150 nm range was UV inscribed for the first time in SM28 fiber using a 244 nm Ar+ continuous wave laser and a phase mask with 25 mm long uniform pitch and titled period pattern of 33.7° with respect to the fiber axis. Stable soliton pulses centered at 1992.7 nm with 2.02 nm FWHM bandwidth were produced at a repetition rate of 1.902 MHz with pulse duration of 2.2 ps and pulse energy of 74.6 pJ. As increased pump power, the laser also can operate at noise-like regime with 18.1 nm FWHM bandwidth and pulse energy of up to 250.1 nJ. Using the same 45° TFG, both stable soliton and noise-like mode-locking centered at ∼1970 nm and ∼2050 nm, were also achieved by shortening and extending the length of Tm3+-doped fiber, respectively, exhibiting advantages of broadband and low insertion loss at 2 μm band.