40 resultados para stochastic boundedness
Resumo:
We investigate the integration of the European peripheral financial markets with Germany, France, and the UK using a combination of tests for structural breaks and return correlations derived from several multivariate stochastic volatility models. Our findings suggest that financial integration intensified in anticipation of the Euro, further strengthened by the EMU inception, and amplified in response to the 2007/2008 financial crisis. Hence, no evidence is found of decoupling of the equity markets in more troubled European countries from the core. Interestingly, the UK, despite staying outside the EMU, is not worse integrated with the GIPSI than Germany or France. © 2013 Elsevier B.V.
Resumo:
For analysing financial time series two main opposing viewpoints exist, either capital markets are completely stochastic and therefore prices follow a random walk, or they are deterministic and consequently predictable. For each of these views a great variety of tools exist with which it can be tried to confirm the hypotheses. Unfortunately, these methods are not well suited for dealing with data characterised in part by both paradigms. This thesis investigates these two approaches in order to model the behaviour of financial time series. In the deterministic framework methods are used to characterise the dimensionality of embedded financial data. The stochastic approach includes here an estimation of the unconditioned and conditional return distributions using parametric, non- and semi-parametric density estimation techniques. Finally, it will be shown how elements from these two approaches could be combined to achieve a more realistic model for financial time series.
Resumo:
This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.
Resumo:
Control design for stochastic uncertain nonlinear systems is traditionally based on minimizing the expected value of a suitably chosen loss function. Moreover, most control methods usually assume the certainty equivalence principle to simplify the problem and make it computationally tractable. We offer an improved probabilistic framework which is not constrained by these previous assumptions, and provides a more natural framework for incorporating and dealing with uncertainty. The focus of this paper is on developing this framework to obtain an optimal control law strategy using a fully probabilistic approach for information extraction from process data, which does not require detailed knowledge of system dynamics. Moreover, the proposed control method framework allows handling the problem of input-dependent noise. A basic paradigm is proposed and the resulting algorithm is discussed. The proposed probabilistic control method is for the general nonlinear class of discrete-time systems. It is demonstrated theoretically on the affine class. A nonlinear simulation example is also provided to validate theoretical development.
Resumo:
Cochlear implants are prosthetic devices used to provide hearing to people who would otherwise be profoundly deaf. The deliberate addition of noise to the electrode signals could increase the amount of information transmitted, but standard cochlear implants do not replicate the noise characteristic of normal hearing because if noise is added in an uncontrolled manner with a limited number of electrodes then it will almost certainly lead to worse performance. Only if partially independent stochastic activity can be achieved in each nerve fibre can mechanisms like suprathreshold stochastic resonance be effective. We are investigating the use of stochastic beamforming to achieve greater independence. The strategy involves presenting each electrode with a linear combination of independent Gaussian noise sources. Because the cochlea is filled with conductive salt solutions, the noise currents from the electrodes interact and the effective stimulus for each nerve fibre will therefore be a different weighted sum of the noise sources. To some extent therefore, the effective stimulus for a nerve fibre will be independent of the effective stimulus of neighbouring fibres. For a particular patient, the electrode position and the amount of current spread are fixed. The objective is therefore to find the linear combination of noise sources that leads to the greatest independence between nerve discharges. In this theoretical study we show that it is possible to get one independent point of excitation (one null) for each electrode and that stochastic beamforming can greatly decrease the correlation between the noise exciting different regions of the cochlea. © 2007 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
A popular explanation for China's rapid economic growth in recent years has been the dramatic increase in the number of private domestic and foreign-owned firms and a decline in the state-owned sector. However, recent evidence suggest that China's state-owned enterprise (SOEs) are in fact stronger than ever. In this paper we examine over 78,000 manufacturing firms between 2002 and 2006 to investigate the relationship between ownership structure and the degree of firm-level exposure to export markets and firm-level productivity. Using a conditional stochastic dominance approach we reveal that although our results largely adhere to prior expectations, the performance of state-owned enterprises differs markedly between those that export and those that supply the domestic market only. It appears that China's internationally focused SOEs have become formidable global competitors.
Resumo:
An iterative procedure is proposed for the reconstruction of a temperature field from a linear stationary heat equation with stochastic coefficients, and stochastic Cauchy data given on a part of the boundary of a bounded domain. In each step, a series of mixed well-posed boundary-value problems are solved for the stochastic heat operator and its adjoint. Well-posedness of these problems is shown to hold and convergence in the mean of the procedure is proved. A discretized version of this procedure, based on a Monte Carlo Galerkin finite-element method, suitable for numerical implementation is discussed. It is demonstrated that the solution to the discretized problem converges to the continuous as the mesh size tends to zero.
Resumo:
We propose the use of stochastic frontier approach to modelling financial constraints of firms. The main advantage of the stochastic frontier approach over the stylised approaches that use pooled OLS or fixed effects panel regression models is that we can not only decide whether or not the average firm is financially constrained, but also estimate a measure of the degree of the constraint for each firm and for each time period, and also the marginal impact of firm characteristics on this measure. We then apply the stochastic frontier approach to a panel of Indian manufacturing firms, for the 1997–2006 period. In our application, we highlight and discuss the aforementioned advantages, while also demonstrating that the stochastic frontier approach generates regression estimates that are consistent with the stylised intuition found in the literature on financial constraint and the wider literature on the Indian credit/capital market.
Resumo:
Emrouznejad et al. (2010) proposed a Semi-Oriented Radial Measure (SORM) model for assessing the efficiency of Decision Making Units (DMUs) by Data Envelopment Analysis (DEA) with negative data. This paper provides a necessary and sufficient condition for boundedness of the input and output oriented SORM models.
Resumo:
This paper proposes a semiparametric smooth-coefficient (SPSC) stochastic production frontier model where regression coefficients are unknown smooth functions of environmental factors (ZZ). Technical inefficiency is specified in the form of a parametric scaling function which also depends on the ZZ variables. Thus, in our SPSC model the ZZ variables affect productivity directly via the technology parameters as well as through inefficiency. A residual-based bootstrap test of the relevance of the environmental factors in the SPSC model is suggested. An empirical application is also used to illustrate the technique.
Resumo:
Calibration of stochastic traffic microsimulation models is a challenging task. This paper proposes a fast iterative probabilistic precalibration framework and demonstrates how it can be successfully applied to a real-world traffic simulation model of a section of the M40 motorway and its surrounding area in the U.K. The efficiency of the method stems from the use of emulators of the stochastic microsimulator, which provides fast surrogates of the traffic model. The use of emulators minimizes the number of microsimulator runs required, and the emulators' probabilistic construction allows for the consideration of the extra uncertainty introduced by the approximation. It is shown that automatic precalibration of this real-world microsimulator, using turn-count observational data, is possible, considering all parameters at once, and that this precalibrated microsimulator improves on the fit to observations compared with the traditional expertly tuned microsimulation. © 2000-2011 IEEE.
Resumo:
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained.
Resumo:
This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.
Resumo:
Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.