18 resultados para seafood liquid waste generation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Considering the UK's limited capacity for waste disposal (particularly for hazardous/radiological waste) there is growing focus on waste avoidance and minimisation to lower the volumes of waste being sent to disposal. The hazardous nature of some waste can complicate its management and reduction. To address this problem there was a need for a decision making methodology to support managers in the nuclear industry as they identify ways to reduce the production of avoidable hazardous waste. The methodology we developed is called Waste And Sourcematter Analysis (WASAN). A methodology that begins the thought process at the pre-waste creation stage (i.e. Avoid). Design/methodology/ approach: The methodology analyses the source of waste, the production of waste inside the facility, the knock on effects from up/downstream facilities on waste production, and the down-selection of waste minimisation actions/options. WASAN has been applied to case studies with licencees and this paper reports on one such case study - the management of plastic bags in Enriched Uranium Residues Recovery Plant (EURRP) at Springfields (UK) where it was used to analyse the generation of radioactive plastic bag waste. Findings: Plastic bags are used in EURRP as a strategy to contain hazard. Double bagging of materials led to the proliferation of these bags as a waste. The paper reports on the philosophy behind WASAN, the application of the methodology to this problem, the results, and views from managers in EURRP. Originality/value: This paper presents WASAN as a novel methodology for analyzing the minimization of avoidable hazardous waste. This addresses an issue that is important to many industries e.g. where legislation enforces waste minimization, where waste disposal costs encourage waste avoidance, or where plant design can reduce waste. The paper forms part of the HSE Nuclear Installations Inspectorate's desire to work towards greater openness and transparency in its work and the development in its thinking.© Crown Copyright 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.