28 resultados para sFlt-1


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background - Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods - Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings - Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance - Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been proposed that either excessive inflammation or an imbalance in angiogenic factors cause pre-eclampsia. In the present review, the arguments for and against the role of inflammation and/or angiogenic imbalance as the cause of pre-eclampsia are discussed on the basis of the Bradford-Hill criteria for disease causation. Although both angiogenic imbalance and systemic inflammation are implicated in pre-eclampsia, the absence of temporality of inflammatory markers with pre-eclampsia challenges the concept that excessive inflammation is the cause of pre-eclampsia. In contrast, the elevation of anti-angiogenic factors that precede the clinical signs of pre-eclampsia fulfils the criterion of temporality. The second most important criterion is the dose-response relationship. Although such a relationship has not been proven between pro-inflammatory cytokines and pre-eclampsia, high levels of anti-angiogenic factors have been shown to correlate with increased incidence and disease severity, hence satisfying this condition. Finally, as the removal of circulating sFlt-1 (soluble Fms-like tyrosine kinase receptor-1) from pre-eclamptic patients significantly improves the clinical outcome, it fulfils the Hill's experiment principle, which states that removal of the cause by an appropriate experimental regimen should ameliorate the condition. In contrast, treatment with high doses of corticosteroid fails to improve maternal outcome in pre-eclampsia, despite suppressing inflammation. Inflammation may enhance the pathology induced by the imbalance in the angiogenic factors, but does not by itself cause pre-eclampsia. Development of therapies based on the angiogenic and cytoprotective mechanisms seems more promising.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background - Severe preeclampsia is associated with increased neutrophil activation and elevated serum soluble endoglin (sEng) and soluble Flt-1 (sFlt-1) in the maternal circulation. To dissect the contribution of systemic inflammation and anti-angiogenic factors in preeclampsia, we investigated the relationships between the circulating markers of neutrophil activation and anti-angiogenic factors in severe preeclampsia or systemic inflammatory state during pregnancy. Methods and results - Serum sEng, sFlt-1, placenta growth factor, interleukin-6 (IL-6), calprotectin, and plasma a-defensins concentrations were measured by ELISA in 88 women of similar gestational age stratified as: severe preeclampsia (sPE, n = 45), maternal systemic inflammatory response (SIR, n = 16) secondary to chorioamnionitis, pyelonephritis or appendicitis; and normotensive controls (CRL, n = 27). Neutrophil activation occurred in sPE and SIR, as a-defensins and calprotectin concentrations were two-fold higher in both groups compared to CRL (P < 0.05 for each). IL-6 concentrations were highest in SIR (P < 0.001), but were higher in sPE than in CRL (P < 0.01). sFlt-1 (P < 0.001) and sEng (P < 0.001) were ˜20-fold higher in sPE compared to CRL, but were not elevated in SIR. In women with sPE, anti-angiogenic factors were not correlated with markers of neutrophil activation (a-defensins, calprotectin) or inflammation (IL-6). Conclusions - Increased systemic inflammation in sPE and SIR does not correlate with increased anti-angiogenic factors, which were specifically elevated in sPE indicating that excessive systemic inflammation is unlikely to be the main contributor to severe preeclampsia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Circulating antiangiogenic factors and proinflammatory cytokines are implicated in the pathogenesis of preeclampsia. This study was performed to test the hypothesis that steroids modify the balance of inflammatory and proangiogenic and antiangiogenic factors that potentially contribute to the patient’s evolving clinical state. Seventy singleton women, admitted for antenatal corticosteroid treatment, were enrolled prospectively. The study group consisted of 45 hypertensive women: chronic hypertension (n=6), severe preeclampsia (n=32), and superimposed preeclampsia (n=7). Normotensive women with shortened cervix (<2.5 cm) served as controls (n=25). Maternal blood samples of preeclampsia cases were obtained before steroids and then serially up until delivery. A clinical severity score was designed to clinically monitor disease progression. Serum levels of angiogenic factors (soluble fms-like tyrosine kinase-1 [sFlt-1], placental growth factor [PlGF], soluble endoglin [sEng]), endothelin-1 (ET-1), and proinflammatory markers (IL-6, C-reactive protein [CRP]) were assessed before and after steroids. Soluble IL-2 receptor (sIL-2R) and total immunoglobulins (IgG) were measured as markers of T- and B-cell activation, respectively. Steroid treatment coincided with a transient improvement in clinical manifestations of preeclampsia. A significant decrease in IL-6 and CRP was observed although levels of sIL-2R and IgG remained unchanged. Antenatal corticosteroids did not influence the levels of angiogenic factors but ET-1 levels registered a short-lived increase poststeroids. Although a reduction in specific inflammatory mediators in response to antenatal steroids may account for the transient improvement in clinical signs of preeclampsia, inflammation is unlikely to be the major contributor to severe preeclampsia or useful for therapeutic targeting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Circulating antiangiogenic factors and proinflammatory cytokines are implicated in the pathogenesis of preeclampsia. This study was performed to test the hypothesis that steroids modify the balance of inflammatory and proangiogenic and antiangiogenic factors that potentially contribute to the patient's evolving clinical state. Seventy singleton women, admitted for antenatal corticosteroid treatment, were enrolled prospectively. The study group consisted of 45 hypertensive women: chronic hypertension (n=6), severe preeclampsia (n=32), and superimposed preeclampsia (n=7). Normotensive women with shortened cervix (<2.5 cm) served as controls (n=25). Maternal blood samples of preeclampsia cases were obtained before steroids and then serially up until delivery. A clinical severity score was designed to clinically monitor disease progression. Serum levels of angiogenic factors (soluble fms-like tyrosine kinase-1 [sFlt-1], placental growth factor [PlGF], soluble endoglin [sEng]), endothelin-1 (ET-1), and proinflammatory markers (IL-6, C-reactive protein [CRP]) were assessed before and after steroids. Soluble IL-2 receptor (sIL-2R) and total immunoglobulins (IgG) were measured as markers of T- and B-cell activation, respectively. Steroid treatment coincided with a transient improvement in clinical manifestations of preeclampsia. A significant decrease in IL-6 and CRP was observed although levels of sIL-2R and IgG remained unchanged. Antenatal corticosteroids did not influence the levels of angiogenic factors but ET-1 levels registered a short-lived increase poststeroids. Although a reduction in specific inflammatory mediators in response to antenatal steroids may account for the transient improvement in clinical signs of preeclampsia, inflammation is unlikely to be the major contributor to severe preeclampsia or useful for therapeutic targeting. © 2014 American Heart Association, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite intense investigation, mechanisms that facilitate the emergence of the pre-eclampsia phenotype in women are still unknown. Placental hypoxia, hypertension, proteinuria and oedema are the principal clinical features of this disease. It is speculated that hypoxia-driven disruption of the angiogenic balance involving vascular endothelial growth factor (VEGF)/placenta-derived growth factor (PLGF) and soluble Fms-like tyrosine kinase-1 (sFLT-1, the soluble form of VEGF receptor 1) might contribute to some of the maternal symptoms of pre-eclampsia. However, pre-eclampsia does not develop in all women with high sFLT-1 or low PLGF levels, and it also occurs in some women with low sFLT-1 and high PLGF levels. Moreover, recent experiments strongly suggest that several soluble factors affecting the vasculature are probably elevated because of placental hypoxia in the pre-eclamptic women, indicating that upstream molecular defect(s) may contribute to pre-eclampsia. Here we show that pregnant mice deficient in catechol-O-methyltransferase (COMT) show a pre-eclampsia-like phenotype resulting from an absence of 2-methoxyoestradiol (2-ME), a natural metabolite of oestradiol that is elevated during the third trimester of normal human pregnancy. 2-ME ameliorates all pre-eclampsia-like features without toxicity in the Comt(-/-) pregnant mice and suppresses placental hypoxia, hypoxia-inducible factor-1alpha expression and sFLT-1 elevation. The levels of COMT and 2-ME are significantly lower in women with severe pre-eclampsia. Our studies identify a genetic mouse model for pre-eclampsia and suggest that 2-ME may have utility as a plasma and urine diagnostic marker for this disease, and may also serve as a therapeutic supplement to prevent or treat this disorder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pre-eclampsia, a pregnancy-specific multi-organ syndrome characterized by widespread endothelial damage, is a new risk factor for cardiovascular disease. No therapies exist to prevent or treat this condition, even to achieve a modest improvement in pregnancy length or birth weight. Co-administration of soluble VEGFR-1 [VEGF (vascular endothelial growth factor) receptor-1; more commonly known as sFlt-1 (soluble Fms-like tyrosine kinase-1)] and sEng (soluble endoglin) to pregnant rats elicits severe pre-eclampsia-like symptoms. These two anti-angiogenic factors are increased dramatically prior to the clinical onset of pre-eclampsia and are quite possibly the 'final common pathway' responsible for the accompanying signs of hypertension and proteinuria as they can be reversed by VEGF administration in animal models. HO-1 (haem oxygenase-1), an anti-inflammatory enzyme, and its metabolite, CO (carbon monoxide), exert protective effects in several organs against oxidative stimuli. In a landmark publication, we showed that the HO-1 pathway inhibits sFlt-1 and sEng in cultured cells and human placental tissue explants. Both CO and NO (nitric oxide) promote vascular homoeostasis and vasodilatation, and activation of VEGFR-1 or VEGFR-2 induced eNOS (endothelial nitric oxide synthase) phosphorylation, NO release and HO-1 expression. Our studies established the HO-1/CO pathway as a negative regulator of cytokine-induced sFlt-1 and sEng release and eNOS as a positive regulator of VEGF-mediated vascular morphogenesis. These findings provide compelling evidence for a protective role of HO-1 in pregnancy and identify it as a target for the treatment of pre-eclampsia. Any agent that is known to up-regulate HO-1, such as statins, may have potential as a therapy. Any intervention achieving even a modest prolongation of pregnancy or amelioration of the condition could have a significant beneficial health impact worldwide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The incidence of preeclampsia is reduced by a third in smokers, but not in snuff users. Soluble Flt-1 (sFlt-1) and soluble endoglin (sEng) are increased prior to the clinical onset of preeclampsia. Animals exposed to high circulating levels of sFlt-1 and sEng elicit severe preeclampsia-like symptoms. Smokers have reduced circulating sFlt-1 and cigarette smoke extract decreases sFlt-1 release from placental villous explants. An anti-inflammatory enzyme, heme oxygenase-1 (HO-1) and its metabolite carbon monoxide (CO), inhibit sFlt-1 and sEng release. Women with preeclampsia exhale less CO than women with normal pregnancies and HO expression decreases as the severity of preeclampsia increases. In contrast, sFlt-1 levels increase with increasing severity. More importantly, chorionic villous sampling from women at eleven weeks gestation shows that HO-1 mRNA expression is decreased in women who go on to develop preeclampsia. Collectively, these facts provide compelling evidence to support the proposition that the pathogenesis of preeclampsia is largely due to loss of HO activity. This results in an increase in inflammation and excessive elevation of the two key anti-angiogenic factors responsible for the clinical signs of preeclampsia. These findings provide strong evidence for a protective role of HO-1 in pregnancy and identify HO as a target for the treatment of preeclampsia. The cardiovascular drugs, statins, stimulate HO-1 expression and inhibit sFlt-1 release in vivo and in vitro, thus, they have the potential to ameliorate early onset preeclampsia. The StAmP trial is underway to address this and if positive, its outcome will lead to the very first therapeutic intervention to prolong affected pregnancies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pre-eclampsia is a vascular disorder of pregnancy where anti-angiogenic factors, systemic inflammation and oxidative stress predominate, but none can claim to cause pre-eclampsia. This review provides an alternative to the 'two-stage model' of pre-eclampsia in which abnormal spiral arteries modification leads to placental hypoxia, oxidative stress and aberrant maternal systemic inflammation. Very high maternal soluble fms-like tyrosine kinase-1 (sFlt-1 also known as sVEGFR) and very low placenta growth factor (PlGF) are unique to pre-eclampsia; however, abnormal spiral arteries and excessive inflammation are also prevalent in other placental disorders. Metaphorically speaking, pregnancy can be viewed as a car with an accelerator and brakes, where inflammation, oxidative stress and an imbalance in the angiogenic milieu act as the 'accelerator'. The 'braking system' includes the protective pathways of haem oxygenase 1 (also referred as Hmox1 or HO-1) and cystathionine-γ-lyase (also known as CSE or Cth), which generate carbon monoxide (CO) and hydrogen sulphide (H2S) respectively. The failure in these pathways (brakes) results in the pregnancy going out of control and the system crashing. Put simply, pre-eclampsia is an accelerator-brake defect disorder. CO and H2S hold great promise because of their unique ability to suppress the anti-angiogenic factors sFlt-1 and soluble endoglin as well as to promote PlGF and endothelial NOS activity. The key to finding a cure lies in the identification of cheap, safe and effective drugs that induce the braking system to keep the pregnancy vehicle on track past the finishing line.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The exact aetiology of preeclampsia is unknown, but there is a good association with an imbalance in angiogenic growth factors and abnormal placentation [1]. Hydrogen sulphide (H2S), a gaseous messenger produced mainly by cystathionine γ-lyase (CSE), is pro-angiogenic vasodilator [2] and [3]. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Plasma levels of H2S were significantly decreased in preeclamptic women (p < 0.01), which was associated with reduced CSE message and protein expression in human placenta as determined by real-time PCR and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine (PAG) in first trimester (8–12 weeks gestation) human placental explants had reduced placenta growth factor (PlGF) production as assessed by ELISA and inhibited trophoblast invasion in vitro. Endothelial CSE knockdown by siRNA transfection increased the endogenous release of soluble fms-Like tyrosine kinase-1 (sFlt-1) and soluble endoglin, (sEng) from human umbilical vein endothelial cells while adenoviral-mediated CSE overexpression inhibited their release. Administration of PAG to pregnant mice induced hypertension, liver damage, and promoted abnormal labyrinth vascularisation in the placenta and decreased fetal growth. Finally, a slow releasing, H2S-generating compound, GYY4137, inhibited circulating sFlt-1 and sEng levels and restored fetal growth that was compromised by PAG-treatment demonstrating that the effect of CSE inhibitor was due to inhibition of H2S production. These results imply that endogenous H2S is required for healthy placental vasculature and a decrease in of CSE/H2S activity may contribute to the pathogenesis of preeclampsia. References [1] S. Ahmad, A. Ahmed, Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia, Circ Res., 95 (2004), pp. 884–891. [2] G. Yang, et al., H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase, Science, 322 (2008), pp. 587–590. [3] A. Papapetropoulos, et al., Hydrogen sulfide is an endogenous stimulator of angiogenesis, Proc Natl Acad Sci USA, 106 (2009), pp. 21972–21977.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Life's perfect partnership starts with the placenta. If we get this right, we have the best chance of healthy life. In preeclampsia, we have a failing placenta. Preeclampsia kills one pregnant woman every minute and the life expectancy of those who survive is greatly reduced. Preeclampsia is treated roughly the same way it was when Thomas Edison was making the first silent movie. Globally, millions of women risk death to give birth each year and almost 300,000 lose their lives in this process. Over half a million babies around the world die each year as a consequence of preeclampsia. Despite decades of research, we lack pharmacological agents to treat it. Maternal endothelial dysfunction is a central phenomenon responsible for the clinical signs of preeclampsia. In the late nineties, we discovered that vascular endothelial growth factor (VEGF) stimulated nitric oxide release. This led us to suggest that preeclampsia arises due to the loss of VEGF activity, possibly due to a rise in soluble Flt-1 (sFlt-1), the natural antagonist of VEGF. Researchers have shown that high sFlt-1 elicits preeclampsia-like signs in pregnant rats and sFlt-1 increases before the clinical signs of preeclampsia in pregnant women. We demonstrated that removing or reducing this culprit protein from preeclamptic placenta restored the angiogenic balance. Heme oxygenase-1 (HO-1 or Hmox1) that generates carbon monoxide (CO), biliverdin (rapidly converted to bilirubin) and iron is cytoprotective. We showed that the Hmox1/CO pathway prevents human placental injury caused by pro-inflammatory cytokines and suppresses sFlt-1 and soluble endoglin release, factors responsible for preeclampsia phenotypes. The other key enzyme we identified is the hydrogen sulfide generating cystathionine-gamma-lyase (CSE or Cth). These are the only two enzyme systems shown to suppress sFlt-1 and to act as protective pathways against preeclampsia phenotypes in animal models. We also showed that when hydrogen sulfide restores placental vasculature, it also improves lagging fetal growth. These molecules act as the inhibitor systems in pregnancy and when they fail, this triggers preeclampsia. Discovering that statins induce these enzymes led us to an RCT to develop a low-cost therapy (StAmP Trial) to prevent or treat preeclampsia. If you think of pregnancy as a car then preeclampsia is an accelerator–brake defect disorder. Inflammation, oxidative stress and an imbalance in the angiogenic milieu fuel the ‘accelerator’. It is the failure in the braking systems (the endogenous protective pathway) that results in the ‘accelerator’ going out of control until the system crashes, manifesting itself as preeclampsia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Fetal growth restriction (FGR), which causes perinatal morbidity and mortality, is characterized by birth weight and body mass being below 10th percentile for gestational age. FGR babies are prone to develop cardiovascular diseases later in life. Inadequate placental transfer of nutrients from mother to fetus due to placental insufficiency is considered the underlying cause of FGR. Recently, we demonstrated that blockade of cystathionine-γ-lyase (CSE) activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in cystathionine-β-synthase (CBS) / H2S pathway may promote FGR. METHODS: Placental CBS expressions were determined in women with FGR (n=9) and normal controls (n=14) by Western blotting and real-time qPCR. ELISA was used to determine angiogenic factors levels in plasma and first-trimester (8–12 weeks gestation) human placental explants. Time pregnant mice were treated with CBS inhibitor, aminooxyacetic acid (AOA). Mean arterial blood pressure (MBP), histological assessments of placenta and embryos were performed. RESULTS: Placental CBS expressions were significantly reduced in women with FGR. Inhibition of CBS activity by AOA reduced PlGF production from first-trimester human placental explants, Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction, which was associated with reduced placental PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor-treated animals. Furthermore, H2S donor GYY4137 treatment restored fetal growth in pregnant mice exposed to high level of sFlt-1. CONCLUSIONS: These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia opening up the therapeutic potentials of H2S therapy in this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes. Glrx overexpression inhibits VEGF-induced endothelial cell (EC) migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx overexpressing EC from Glrx transgenic mice (TG) showed impaired migration and network formation and secreted higher level of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared to wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Non-canonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC, and enhanced nuclear factor kappa B (NF-kB) activity which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-kB -dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt may be a part of mechanism of redox regulated VEGF signaling.